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The Heyting-Semantics of propositions is constituted on the basis of an isomorphism

between the proofs of a proposition and the terms of an appropriate typed A-Calculus. It

represents a profound alternative to the traditional Tarskian semantics, in that it models

pwof rather than truth. In this dissertation, we propose a generalization of this conception

to the (untyped) A-Calculus a calculus for which a Tarskian semantics already exists. The

critical abstraction involved is an appropriate formal notion of a proof-object (of A-terms):

we arrive at this by suitably refining the notion of a partial evaluation of a A-term. The

collection of the sets of proof-objects of the terms is inductively structured into dependent

and impredicative theory of constructive types, under certain operations corresponding to

the standard type-theoretic ones. The constructions are carried out within the framework

of fibered categories, and remarkably, the (internal) category of types is seen to be a (full)

sub-category of the partial equivalence relations (on the closed term model) thus yielding

an embedding into the Realizability topos model of impredicative calculi. We obtain the

standard denotational semantics of the terms in the topos, and show the resulting class of

domain-theoretic objects to be internally cartesian closed. We also show that the "external"

(partial) ordering on the proof-objects may be formulated as intrinsic synthetic structure on

the basis of a classifier of recursively enumerable sub-objects.
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This dissertation is an essay within the tradition of formal semantics. Its intellectual

descent may be traced to the works of principally three major thinkers: Frege, Tarski and

lleyting. At the basis of Frege's identification of Sense as that part of moaning that de-

termined reference completely, there was a critical, yet not very precise notion of structure.

For instance, it was the logical structure of propositions (or sentences), induced on the basis

of the rules of in fore tiro (of a specific logical theory), that was relevant for the determina-

tion of their truth and not the grammatical structure (or syntax). In Tarski's subsequent

re-formulation of the theory in terms of the (necessary and sufficient) conditions of validity,

the role of structure is taken over by the algebraic properties of certain universal models.

However the theory forced a complete (or "global") evaluation because of which only certain

kinds of object-language expressions could have a well-defined meaning ([83]); thus its scope

was restricted on the basis of a strong referential discipline.

It was with A. Heyting that a radical alternative to Tarskian semantics became available.

Working on the basis of a re-formulation of the notion of proof provided by the Brouwer-

Heyting-Kolmogorov interpretation ([87]), he proposed that one model the proofs of propo-

sitions instead of their truth. Under this interpretation, the proofs were formalized as the

terms of a theory of Types; thus, to each proposition corresponded the Tyjyc of its proofs

also known as the Curry-Howard Type and we had the genesis of constructive type theory

([53, 27, 87]). The Types epitomized operational information and the theory provided an

effective formal notion of intensional isomorphism that entailed semantic equivalence.

Our study is animated by the perspective that a truly general conception of semantics as

was that of Tarski must take every linguistic system as its field. If that is accepted then
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we ask whether \.\\r notion of \\ < otisl u< Live semantics admits a. va.li<l application to another

linguistic domain namely the A-Calculus itself for which there exists already a Tarskian

semantics ([70]). In the case of propositions, it may be recalled that the constructive theory

of types could only be formulated on the basis of a fundamental re-formulation of the notion

of a proof accord ing to the Brouwer-Ileyting-Kolmogorov interpretation. Hence, we are led

to believe that the critical abstraction underlying any answer to the current claim would be

some formal notion of a proof-object of the A-terms. In this quest we are guided principally

by three criteria.

1. We would need to capture the information corresponding to "local" (or partial) evalu-

ation, on the basis of which we may individuate some notion entailing semantic equiv-

alence ([89]).

2. We should be able to induce, on the basis of the sets of proof-objects of the pure A-

terms, and under some suitable notion of operations defined on them corresponding to

the rules of Type dependency and quantification, a full constructive theory of Types

(specifically, a Theory of Constructions) ([38]).

3. We should be able lo exploit the partial-order structure inherent in the notion of a

partial evaluation (of the pure A-terms), towards the construction of a class of objects
that could sustain the constitution of the standard denotations of the A-expressions

([5, Chapter 18 3]). Moreover, we sophisticate the last criterion by requiring that the
construction of (canonical) denotations from the p,oofs should be carried out within
a higher-order intuitionistic universe, in which the denotational objects would essen-

tially be sets (with standard function spaces); this could be taken then to represent a

rudimentary abstract logic of programs denotations (c/. [2]).

We note that the last criterion gives us a framework to relate the Tarskian semantics to the
Hcytmgian: for propositions, this relationship- between the semantics of proofs to that of

mnaMtyfr (intuitionistic) truth)-shows up in the topes interpretations) of constructive
types ([62, 34]).

The crux of our work is the identification of a single genera, and forma, notion which
sat,s fies each of the criteria iisted above. We arrive at the notion through successive re-

starting fro,,, certain top ,oKica, considerations
re.ating lo th. convergence of
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of residues of all terms y such that x >0 y can be shown to determine the computational

behavior of a term completely: terms with identical such sets are semantically equivalent and

accordingly we take the set as a first approximation to the notion of a (Curry-Howard) Type

of proof-objects of a A-term.

We attempt to set up a (first-order) theory of dependent Types on the basis of the (bi-)

categorical equivalence between relatively cartesian closed categories and Martin-L6f Type

theories (without equality types; [38]). Critical to this construction is the refinement of the

notion of a residue as representing an equivalence class of the relation induced by that of

mutual rj-subsumption among Bohm trees of terms ([5, Chapter 10 3]). Thus, the Type of

a term is understood as a partial equivalence relation; we induce, on this basis, a theory that

entails those judgements of dependency that are sanctioned by the (sub-) term structure of

the calculus, and recursively generalized from this basis. Thus, on this formulation, a proof-

object is conceived as any such equivalence class of A-terms, and this is the conception we

retain throughout the sequel.

Subsequently and on the basis of this notion, we extend the first-order theory to a full

impredicative and dependent calculus essentially a Theory of Constructions ([38]). The

significant aspect of the argument is to model the Order of Types, and impredicative quan-

tification over it. The constructions are intricate and carried out within the framework of

fibcrcd categories, more precisely, tho theory of comprehension categories developed recently

in the study of generalized type systems ([40]). We prove that the object of Types forms a

full internal sub-category ([34]) of the base category of our fibration, and characterize its limit

structure as relative cartesian closure (in a suitable internal sense). We take the induction of

this higher-order Type theory to constitute a viable program of the constructive semantics

of the A-Calculus.

From this point, we turn towards exploring the constitution of the denotational domains of

the terms, within an intuitionistic universe. We show that our notion of a proof-object permits

an elegant embedding of the internal category of Types into the Moggi-Hyland Realizability

Topos as a full internal sub-category ([33, 34]) in fact, as a full sub-category of the (internal

categorical form of tho) partial equivalence relations over the closed term model of the A-

Calculus ([48]). We demonstrate the order-theoretic structure on the objects of this category,

and devise a method of completion (with respect to recursively enumerable directed sets)

that yields an internal category of directed complete partial orders in the topos ([68]). This

category is a generalization of the corresponding Hey ting-algebra object of the denotations

of propositions and we carry through the analogy formally by showing that the category is

(internally) cartesian closed. Finally we remedy the extrinsic character of this construction



by re-formulating the order-structure synthetically i.e. on the basis of an intrinsic order

induced by a certain classifier of recursively enumerable sub-objects ([35, 58]). We show that

the object of all possible proof-objects constitutes a dominance ([67]) and hence an object

of computable truth-values. Our final result is, that our category of domain-theoretic objects

is actually a sub-category of the replete objects ([35, 86]) identified recently as a canonical

category of domains internal to the topos.
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Chapter 1

Introduction

This dissertation is an essay within the tradition of formal semantics; and true to its nature as

an essay, it is exploratory rather than ampliative. It does not seek an answer to any question

that it poses, or that is already posed: it argues for the validity of posing a certain question

at all. It suggests the generalization of a certain conception of semantics to a domain for

which it is not even clear, ab initio, whether the conception makes any sense. A thesis of this

nature requires justification for its conception as well as for its method and the purpose

of this introduction is to provide this. While the justification for its method may reasonably

be sought within the technology available in the discipline, that for its conception has to

delve deeper to the philosophical lineage of its foundational concepts; accordingly, we shall

spend a fair amount of time in this explication. The intellectual descent of the conception

that I propose to generalize, derives from the works of principally three major thinkers in

the semantic tradition Frege, Tarski and Heyting, and we discuss critically, some of their

seminal ideas in the sequel.

1.1 Frege and the concept of Sense

It may justifiably be said of Frege that his most radical contribution to philosophy was the def-

inition of its foundational question to be the theory of meaning (or logic in his terminology)

and not epistemology as posited by Descartes ([17, pages 665-670]). This was his basic intel-

lectual project and it was articulated through his philosophical commitment to free Kant's

conception of a priori knowledge from every trace of the pure intuition that had been con-

ceived as its ground. This articulation was itself achieved through a subtle shift in focus:

in Kant's conception, analytic a priori knowledge was rather trivial it was the synthetic a

priori which was really a profound matter, and which required the ground of pure intuition.
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Frege reversed the emphasis by re-defining the analytic, thus displacing the synthetic from its

pre-eminent place; and pursued the former within the domain of mathematics specifically

arithmetic ([12, pages 62-82], [17, pages 628-632]).

Most of this thinking took place in the phase of Frege's work epitomized in the publi-

cation of his Die Grundlagen der Arithmetik in 1884; in the subsequent phase(s), the prior

conceptualization of the analytic, as well as the general project of rendering a completely

objective account of the nature of a priori knowledge, was deepened with regard. to both

pre-supposition and entailrncnt. Analyticity was,.for Frege, a cognitive status for sentences:

a sentence was analytic by virtue of the objective and cognitively available methods for estab-

lishing its truth. The consideration of such methods led to that of the information embedded

within the sentence (and its constituents) on the basis of which such methods could be con-

structed and justified; and this led to the discovery of the seminal concept of Sense (as distinct

from reference, or denotation) ([17, pages 631-632]).

For Frege, the Sense of a sentence or any complex referring expression was its "mode of

designation (or presentation);" it is that part of the meaning of an expression that is relevant

to determination of what it designates (in Frege's conception, a sentence was simply a complex

term which designated a truth value); it is that part of the information, objectively available

in a sentence (or referring term), a grasp of which enable, in principle, the determination

of its truth (respectively, reference). Apprehension of the meaning of a sentence implies

apprehension of its Sense while empirically it is possible of course that this apprehension

entails in no way the knowledge of its truth or reference. It is precisely on this account that

the theory of meaning requires the concept of Sense over and above that of reference ([17,

pages 81 -109,631-036]).

Paradoxically, both the significant? find tho weakness of this concept lay in the stipulation

that it be objectively cognitively available The stipulation was significant in that it under-

scored Fropo's basic piojert of rendering an analysis of meaning froo of Overy psychological

or subjective clement; it was weak because neither Frege, nor his followers were ever really

explicit about the precise site and form of the Sense nor the conditions of its recovery from

the surface syntax of expressions.

It was intuitively clear that the Sense-information could only be given on the basis of some

notion of the structure of expressions ([23]): it was not very clear how one was to understand

this notion of structure with any conceptual economy. For instance, it was seldom the case

and definitely not so for the formalized logical language that Frege had constructed that the

grammatical structure (or the syntax) of expressions coincided with the logical structure (that

by virtue of which the truth of sentences was determined). One could surely be generous in
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this instance and identify the Sense with grammatical structure but the resulting theory

would lack conceptual economy; in any case, it was not even necessary that grammatical

structure should subsume the logical. While it is clear that the notion of logical structure is

inscribed within the inferential rules of the language (if such a concept is applicable), it is

not clear if we can infer, on their basis, something like the Sense of individual expressions:

for, the inferential rules are typically framed in terms of sets of (meta-)expressions, and there

does not seem to be an easy way to localize this information to individual expressions.

It can fairly be said that this critical problem is not adequately understood even now 1

,
and

our essay is profoundly animated by it. In order to understand the problem in its generality,

we propose an extension of its scope to calculi other than logical specifically the A-Calculus,

which is a functional calculus with an expressiveness adequate to represent every computable

function. In the context of such calculi we shall use the concept of Sense interchangeably

with that of intension strictly speaking, a narrower and more specialized notion and that

of reference interchangeably with that of extension.

The relevant issues are thrown into sharper perspective once we generalize them to func-

tional calculi. Intensions in the case of programming languages may be taken to be the

"computational information" encoded in the syntax of the programs, while extensions, the

(partial) functions the programs compute. Yet, ambiguity threatens even this: the computa-

tional information has to be distilled from its syntax obviously, and as such, this could only

take the form of a (sufficiently) abstract operational semantics: unfortunately, Computer

Science lacks such a notion 2
. On the other hand, it is known, that the denotation of an

algorithm is by no means captured through any standard (set- theoretic) notion of a function:

some notion of sequentiality is inherent to the idea of an algorithm, and standard denotational

models in functional domains lose the full abstraction property
3

([10, 81]) on this account.

The conception of Sense was undoubtedly radical, and it was only on its basis that the

theory of meaning could be studied analytically, its imprecision is not to be taken to be

symptomatic of its ill-posedness, but an indication of its informativeness. As it turned out,

much of the history of the philosophy of language after Frege was a response to him, and

an effort to clarify the problems inherent in his conception of meaning. In our context,

Mn fact, recent writings of J. -Y. Girard suggests a revision of the notion of Sense towards what he calls the

"Geometry (of interaction)" roughly, the factoring out from syntax, all information redundant to the essential

finite processes through which the semantics (operational as well as denotational) of complex expressions is

determined ([25])
2
as noted by Girard ([27, page 14]); structural operational semantics in the style of Plotkin is manifestly

ad hoc and would not do for this purpose
1

whereby exactly those terms arc equaled in the referential domain as may be exhibited to be semanttcally

equivalent (sec definition in the sequel).
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the next major punctuation of this intellectual territory was effected by Alfred Tarski, after

whom the term "semantics" acquired an entirely different-and what can be said to be its

modern connotation .

1.2 Tarski and the concept of Truth

The paradigm of model-theoretic truth inaugurated by Tarski underlies all subsequent exten-

sional theories of meaning. The basic idea was simple and far-reaching: define truth as ua-

lidity that is satisfiability in all interpretation structures. Once this is done we may abolish

the troublesome intensions (Senses) altogether, and define meaning to be the set of necessary

and sufficient conditions for the truth of every sentence of the language ([84, 83]). The crux

of the argument for the validity of this definition lies in the fact that the truth-conditions

(we shall refer to them as T-rules or 7'-conditions in the sequel) are framed precisely in terms

of the structural descriptions on the basis of which, on the Fregean account, extensions were

determined in the first place. Moreover, a technical distinction was made between the lan-

guage for which a theory of meaning was being supplied- the object language and one in

which the 7'-conditions were expressed the mcta-languagc . Thus, the structural informa-

tion that went into the constitution of the Sense could be entirely incorporated (within the

7'-conditions), while its conceptual buidcn was delegated to an extensional referential realm

through the mediation of the meta-language; this did render a regressive theory, but only in

the last instance. In any case, Tarski advanced a powerful argument for the meta-language,

saying that only thus may we avoid the semantic paradoxes (e.g. the Liar paradox). In

fact, on his account, the question of meaning for a language which could function as its own

meta-language was not really a well-posed one: such languages would always generate para-

doxical expressions for which no meaning could be assignedand hence the theory may not

be complete ([83]).

The theory generalizes easily to functional calculi: taking truth to be the denotation of

logical sentences, we may formulate an analogous theory for, say the A-Calculus, by defining

meaning as the set of conditions governing the denotation of the terms in universal models

that is, models into which, roughly speaking, all other models may be embedded 4
. It is

important to note that at. no singe does Tarski equate meaning with denotation or even the

set of denotations in all possible models: he defines meaning in terms of the (set of) conditions

governing validity. Yet the weakness of the formulation lies precisely in the requirement
that these conditions l,e expressed in a mcla-lai,

fil , ;iR( ,. This construct is no mere technical

'A siimlar concept is available for logic namely, the Herbrand structun
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it is a point at which the entire validity of the argument is hinged. We cannot evade the

fact that without a meta-language the theory may never be complete, that only by virtue

of some rather drastic constraints on the object-language can we expunge an infinity of

sentences that we indubitably understand, but to which the theory can assign no (non-trivial) ,

meaning. This fundamental weakness manifests itself in certain other concrete ways which

we elucidate below especially since it is only vis-a-vis them that the theoretical advantages

of the subsequent proposal of Heyting may be clearly apprehended.

The T-rules reveal themselves to be be unin formative both operationally, and, surpris-

ingly enough, denotationally. We take the latter case first. An adequate theory of meaning

has to characterize that part of the information ideally available in an expression, governing

its denotation (across specific interpretation structures): such is the understanding we in-

herit from Frege and I take this to be reasonably beyond controversy. The Tarskian theory

lacks this conception and hence can provide no such general characterization: typically, the

process through which denotations (in some canonical sense corresponding to validity, or to

universal models) are determined on the basis of the structural descriptions, is an induction

in the meta-language over some general algebraic structure5
([84]). It may justifiably be

argued that the meaning of an expression should consist only in the structural information

intrinsic to a language, and should in no way contain any reference to algebraic properties

of extrinsic structures. On the other hand the operational aspect of the deficiency is that

the T-rules remain opaque to semantic equivalence: roughly speaking, two terms are said

to be semantically equivalent if they have an identical "behavior" in every term context

under some notion of behavioral equivalence typically, based on minimal (i.e. to the point

of definedness) or complete evaluations. It is reasonable to expect that such pairs of terms

should have isomorphic intensions (or Senses). The T-rules give us no method to compute

such isomorphisms.

The opacity of the T-rules to the operational aspect of term semantics is very much more

evident in respect of the inference or rewrite rules of the language. While it is true that

term structure determines denotations, it does so only in the last instance; in truth, it is

the inference or rewriting process which does so directly, and it is in this that an operational

semantics i.e. the specific contributions of terms to the semantics of the contexts they come

to be embedded in is to bo sought. We have already made some remarks on this point in

the section on Frege. Remarkably, these contributions constitute information that is "local"

in nature: in general terms need only to be partially evaluated in the computation of the

5
This might be a boolean lattice for the prepositional case, cylindric algebras for higher-orders, or a domain

(isomorphic to its function space say D) for the A-Calculns.
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overall semantics of the embedding term contexts ([89]).
The T-rules on the other hand,

force complete evaluation in every case, and consequently, provide only "global" semantic

information. As a result, the rules lose application in certain cases of perfectly meaningful

sentences (for instance, theJJar paradox in- the case of Logic)-a point which we have re-

marked earlier. This deficiency is in fact symptomatic of the unconstrained infinitary nature

of the T-rules a point noted by Girard in [25).

In view of the points listed above, we may say that the semantic information content of a

term is epitomized within the set of its contributions to the overall semantics of possible term

contexts, and that this set consists of information which is finitary and of a "local" nature;

moreover, a system of aggregation which can capture this information, may, in all possibility,

provide a basis on which term intensions may be represented and intensions] isomorphisms

(entailing semantic equivalences) be computed. We shall see, in the subsequent theory of

llcyting, a system that can claim to do precisely this.

1.3 Heyting and the concept of Proof

At around the time that Tarski was advancing his semantic conception of Truth, an alternative

conception of semantics was emerging in another distinct conceptual tradition. This was

Constructive tradition itself a ramification of Intuitionism; and the notion of semantics

it engendered received its first clear articulation in the work of A. Heyting ([8, 87]). The

essential idea was simple and radical: model the proofs, instead of the truth with proof

understood in an appropriate constructive sense. Thus, in this theory of semantics which

we would henceforth refer to as Heyting Semantics to every proposition would correspond

the collection of its proofs. Moreover with the appropriate constructive formulation of the

notion of proof, these collections would be structured into a system of syntactic entities, and

inscribed within a calculus of infcrcncing (cf. [48, 27] for excellent studies). This system

could thus be thought of as constituting a theory of Types (after the formulations of Russell

and Ci'odcl) and it was as such that this constructive theory of semantics developed under

Martin- L6f ([51, 53]) and Girard ([27])(amongst others).

The pivotal notion involved here was that of proof; classical proofs were deficient in

two major respects: first, they had an infinitary formulation; second, they behaved non-

deterministically when sought to be reduced to a canonical form on the basis of Gentzen's

HauptsatK ([27, Appendix MJ). Actually, both were aspects of a specific problem in the for-

mulation of the structural rules of classical logic (the Weakening and Contraction rules to be

precise ([25, pages 77-81])). The precise details are unimportant here; the significant point is
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that classical proofs could only have degenerate models. Thus, the point of departure of the

constructive theory -was a re-formulation of the notion of proof itself. The relevant conceptual

shift was provided by the Brouwer-Heyting-Kolmogorov interpretation of the logical connec-

tives ([87, Section 3]), and the natural deduction style of presentation of the inference rules

valid under the interpretation ([27, Chapter 2]). The remarkable point in this conceptualiza-

tion was that every constructive proof was isomorphic to a term of a typed A-Calculus and

thus we had an isomorphism between the proofs of a proposition and the terms of the Type

corresponding to it an isomorphism that has come to be known in Computer Science as the

Curry-Howard isomorphism ([27, Chapter 3]).

It is important to note that the constructive paradigm of semantics still retained the

Tarskian conception, though at one order removed from its traditional point of application.

We still give a Tarskian semantics to the theory of Types, since without that, the latter would

merely syntactic objects possibly lacking even consistency. The point is that we retain it just

as a criterion for the formal consistency of the theory of Types which latter represents the

actual semantics under the current paradigm. Conceived of in this way, the theory overcomes

much of the defects of the earlier one.

We shall argue that the theory of Types constructed on the basis of the Curry-Howard

isomorphism (and modulo the logical equivalences of Constructive Type theory) may very well

claim to be a system of representation of the intensions of propositions. As such, the Type of a

proposition can be seen to be informative both denotationally and operationally remedying

a major deficiency of the Tarskian theory. The logico-syntactic structure of a Type yields

directly a formal and effective procedure for the construction of a term of that Type: any such

term being a proof of the corresponding proposition, we have an immediate criterion of its

(intuitionistic) truth independent of any reference to extrinsic algebraic structures. On the

other hand, the inferential structure of the judgements of Constructive Type theory provide

a formal procedure for defining and demonstrating Type isomorphisms: moreover provably

isomorphic Types imply that the corresponding propositions are semantically equivalent

under the notion of equivalence based on the complete evaluation of (the truth of) embedding

prepositional contexts6 . Thus, a Type functions as a kind of an "interface specification"

(cf. [25, Section IV.5]) and furnishes a formal informative criterion for operational (and

denotational) equivalence.

The significant aspect of the notion of a constructive Type, is its pure operational nature.

6The converse problem t.e if semantically equivalent propositions have isomorphic Types is a more

complex question; however, in the case of the A-Calculus as developed in this thesis, we have a straightforward

affirmative answer.
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The terms of a Type are but (the representations of) proofs which are themselves the

transformations and analyses of sentences according to the inference rules of the language.

Every proof of a proposition being available as a term of the corresponding Type, we have

information about every possible way in which the proof of an embedding complex proposition

may incorporate one of the embedded proposition. Thus, the Type of a term may be seen as

the complete representation of its operational semantics. The essence of the Brouwer-Heyting-

Kolmogorov understanding of a proof was its strictly finitistic nature, and this is embodied

in the constructive conception of semantics; wlrat is not that emphatic is the "local" aspect

of the operational information, and this is in fact a significant point of divergence between

the intuitionistic Tars kian semantics formulated in terms of sheaf models ([87, Chapter 14])

and constructive Type semantics. We shall make a more explicit comment on this in our

conclusion: however, in the subsequent development, we shall make a case for a more general

understanding of the notion of proof, and one which is sensitive to this aspect of "local"

(or partial) information. Arguably, the most significant aspect of the theory of Constructive

Types is its finitistic, constructive nature: consequently, constructive proofs, unlike classical

ones, are effective in other words, they are representations of computable functions and

have non-degenerate models7
. Moreover, the infmitary nature of the T-rules, which resulted

in their loss of application in certain valid cases, may be redressed (to a great extent) in the

constructive formulation.

The fundamental re-conceptualization attempted in this paradigm is undoubtedly rev-

olutionary, even though in its current form, it still leaves a great scope for deepening and

abstraction. For one, the syntax of the Type expressions is still too close to the syntax of the

propositions themselves close enough to identify a easy syntactic isomorphism between the

two. If indeed the Types are to play the role of Fregean Senses, the notion of structure would
have to be re-formulated with a greater degree of abstraction. On the other hand, the concept
of partial evaluation is virtually absent within the current formulation; the concept of a Type
is still too closely tied to the notion of provability (or intuitionistic truth) which again is

a matter of global or complete evaluation. This manifests itself in the uninhabited Types
for paradoxical expressions, which are indubitably meaningful. It is here that the concepts
of intuitionistic model theory-that is typically articulated as the Kripke-Joyal semantics
in sheaf categories ([19])-could play a deepening role. Girard's conception of a realm of

"geometric" objects underlying the syntactic proof-expressions ([25, pages 69, 91-98]) is ex-

tremely suggestive: Both the finitism of constructive proofs, and the partiality represented in
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the intnitionistir shoal fonniilaiiniiK point to the norcl for localized formulationR typical of

geometric objects. This is a provocative line of thought which we reserve for further comment

in the conclusion.

1.4 A Constructive semantics of the A-Calculus

With the preceding discussion, we may appreciate the intellectual context of our proposal

which is, the generalization of Heyting's conception of semantics to functional calculi

specifically the A-Calculus. The proposal carries a serious import: semantics, and specifically

formal semantics, is salient to any language and only to language; the A-Calculus is a formal

language and has already, a Tarskian (or denotational) semantics formulated principally by

D. S. Scott ([72, 73, 70]). It is thus evidence for the true generality of Heyting's conception,

to have a well-defined application to the formal semantics of the A-Calculus.

As we have remarked in the very first paragraph, it is not even clear at this stage, what

could precisely be meant by the proposed notion. Thus, before we may progress with the

substantive theory, we have to clarify, in fact define, terms. The central concept in the con-

structive semantics of propositions is that of proof: as we have remarked, it was only through

the re-formulation of this notion on the basis of the Brouwer-Heyting-Kolmogorov interpre-

tation, that we could arrive at a non-trivial theory of Types. Thus, we would expect that

some notion of a proof-object would be the principal abstraction behind the proposed theory.

In the quest for this abstraction, we choose to be guided by principally three considerations,

which are discussed below.

We have already remarked that a system of aggregation designed to capture the informa-

tion corresponding to the contributions of the terms to the semantics of various embedding

term contexts, would provide us a basis on which term intensions could be represented and

intension al isomorphisms (entailing semantic equivalences) computed. Such contributions

being generally of the nature of partial evaluations, we come across precisely such a notion in

the theory of the A-Calculus. This is the notion of an approximate normal form ([5, Chapter

14 3]), used extensively in the theory of continuity and in the local structure analyses of

A-models. It is also known that if a pair of terms have identical sets of approximate normal

forms, they are semantically equivalent in the sense of yielding equivalent head normal forms

of embedding contexts ([5, Chapter 10 4, Chapter 19 2], [89, Section 6]). Accordingly, we

take this (actually a slight refinement of this which we call a residue) as the first approxima-

tion to the notion of a proof-object. This decision commits us to the view that semantically

equivalent terms should have the same Type in other words, that for such terms, intension al
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isomorphism would be conceived as intcnsional identity. In fact, in the development of the

theory, we would define Types (intensions) for terms modulo semantic equivalence.

The second consideration stems from the requirement that the sets of proof-objects be

structured into a certain kiitf of constructive-Type theory, known as the Theory of Construe-

tions. To appreciate this, we may review the precise format in which the Heyting semantics

of propositions is realized. The process consists of two steps: first, the construction of a

Type theory on the basis of the isomorphism between proofs of a proposition and the terms

of its corresponding Type; second, the Tarskian semantics of this theory in an appropriate

(sub- Category of sets and functions. The second step is essential, since without it we have

merely a system of syntactic objects of which we may not even assert formal consistency.

Variations in the initial logic of the propositions entails variations in the kind of Type theory

which we obtain. For our purpose, we shall consider a very general kind of constructive

Type theory known as the Theory of Constructions (cf. [38] for an excellent study), and

which corresponds to higher-order intuitionistic logic. The salient aspects of this theory is

the representations of dependent Types (and thus, dependent sums and products), and of

impredicatively quantified (or polymorphic) Types. The theory is impredicative, and thus

consists of two strata the Types and Orders. The Types correspond to the propositions (un-

der the Curry-Howard isomorphism), while the Orders represent the hierarchy of the domains

of impredicative quantification, and other sortal domains.

Thus, the first step of the constructive semantics may be characterized roughly as the in-

duction, on the basis of the prepositional constants of the logical theory (and their construc-

tive proofs), of a canonical system of formal objects (namely, the Theory of Constructions),

under the rules of quantification over impredicative and other sortal domains. The second

step, in which we give a Tarskian semantics to the Theory of Constructions is mathematically

more delicate. A rigorous logical view of models commits us to provide the interpretation in

an universe of sets and functions or to put it categorically, in a suitable full sub-category of

the category of sets with full function spaces
8

. Unfortunately, the interpretation of impred-

icative quantification requires that llir sub-category be closed under internal limits, and the

classical logic of sets dictates that we may not have any such non-trivial full sub-category. As

is well-known, the remedy is to shift to intuitionistic logic, and thus from the boolean topos
of Sets to a general elementary topos. This does yield non-trivial models, and a canonical

construction towards this end is the topos of presheaves over the categorical form of the initial

Type theory ([62]). However, we are still in the realm of the abstract, and historically, a "con-

'This was motivation behind the attempts of both D S Scott ([74]) and A M. PiUs([62]) to fully embed
(categorical) model* of the pure and the polymorphic A-Caln.l.is, respectively, in their pre-sheaf toposes.
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rrrte" instance of an elementary l.opos model was discovered by llyland and Moggi, and raino

to be known as the Infective Topos (more generally, as a Readability topos) (|33, 34, 36, 61]).

In this interpretation, the strata of Types was interpreted as the full sub-category of partial

equivalence relations over the combinatory algebra underlying the topos and known as the

modest sets
9

([01, 69]).

The constructive semantics of the A-Calculus is realized within an identical format. The

first step would be the induction, on the basis of the pure A-terms (actually equivalence

classes of terms, and the sets of their proof-objects), of a Theory of Constructions (in an

appropriate categorical form, known as a CC-Catcgory (cf. [40])), and under the rules of

Type dependency and quantification. We should emphasize the fact that these rules are

eventually spelt out in terms of certain operations on the sets of proof-objects, and as such,

it is a criterion of the adequacy of the latter notion, that it admits such operations as wcll-

deHncd. In the resulting Type theory, the A-tcrms yield the constant Types; the rest of the

Types and Orders come from the induction process.

The third consideration is to have a framework within which a perspicuous connection

may be exhibited between the constructive semantics and the traditional denotational seman-

tics of the A-Calculus: for, in view of our remarks on the nature of intensional information

represented in the Types, the former should permit a complete determination of denota-

tional information. We recall that such a connection in the case of propositions was clearly

articulated in the topos interpretation itself: the proofs were structured into a small and

complete category of Types, while the denotations i.e. the truth values were available as

the global sections of the sub-object classifier. In the case of A-expressions, denotations are

traditionally taken in domains which arc essentially algebraic complete partial orders. The

use of domains is profoundly related to the fact that the set of what we have called residues

admits a partial order structure and the set of such forms for any A-term is a directed set

under this order ([5, Chapter 14 3]). Moreover, it can be shown that the set of all possible

such forms yields a domain under directed completion, and hence the directed set of residues

of any term has a Irosl. upper hound in this domain ([.

r
>, Chapter 10 2]: this bound is pre-

cisely what may be taken as the denotation of the term in the canonical Uolun tree model

of the Calculus ([5, Chapter 18 3]). Since the notion of a proof-object for a pure A-term is

essentially derived from that of a residue, we would want a framework where this process of

obtaining the canonical denotation of a term, from the Type of its proof-objects, would be

"'!> In- Minn- |r'iiM', I In- mill iylriii f Typr* wax Mlrtu Inml n* a /// intoixtl H/-I -ii/nr/tity (wilh the

requisite completeness properties) meaning thereby, an internal rate-gory in the topos, inomorpliic to a full

8U l>-category of the latter (in an appropriate fibcrrd scnsr ([82, 34, 61])).
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perspicuously displayed-anrf tn the rigorous logical sense of interpretation-^, in an uni-

iirrw of (,K>ibty n<m-sln<l<ml) wl* wil.l. Full function spaces. Thin would yield a properly

logical account of extracting denotations from intensions, as well as make available to us, a

standard (set-theoretic) Iogic4o reason about the domains of these denotations.

A precise account of the intended methodology may be described as follows. We would

fully embed our category of Types as a full internal sub-category of the Moggi-Hyland Realiz-

ability Topos obtained from the closed term model of the A-Calculus. The resulting internal

category is then essentially a small category of sets, and we would identify a certain internal

(or synthetic) structure essentially on the basis of a suitable object of computable truth val-

ues (cf. [35, 86]) around which we may perform the domain-theoretic construction which

yields us the denotations (of the pure A-terms) in the standard sense as least upper bounds

of the corresponding sets of proof-objects. The whole construction would be carried out in-

ternally in the topos, and we are thus rendered a small category of synthetic domain- theoretic

objects (directed complete partial orders, or dcpos) which can sustain the usual notion of the

denotation of terms; moreover, this small category is logically one of sets, and we may reason

about them in the standard intuitionistic logic of sets.

It turns out that a simple refinement of the notion of a residue enables us to satisfy

all the considerations discussed above. The basic idea is to conceive of a residue as the

representative of an equivalence class of A-tenns, under the relation induced by the mutual

Tj-subsumption relation among Bohm trees ([5, Chapter 10 3]). The final notion of a proof-

object then, is that of an equivalence class under this relation: and thus, every A-term, and

in fact every Type, can be thought of as a partial equivalence relation on the closed term

model of the Calculus. Consequently, our category of (pre-)domains may be seen to be a full

sub-category of the (internal) category of the modest sets a fact of considerable theoretical

significance. An exploration of the properties of this category reveals that it is (internally)

cartesian closed in a remarkable analogy to the propositional case, where the corresponding

object of truth-values (denotations) was a Heyting algebra object.

With this, we may turn to the substantive development of the ideas discussed here. In

our understanding, the program of a general constructive semantics is a novel conception,
with deep mathematical and philosophical implication: it is a theory witli a great scope
for abstraction, and whereby it may open up a truly general conception of information and

language. In this, our efforts may be seen as the carving out of some initial territory.
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1.5 Overview

The development of the thesis is as follows.

Chapter 2. In this chapter we try to identify a first approximation to the formal notion

of a proof-object. We approach the problem from an apparently unrelated direction:

namely, we seek a purely topological criterion that will distinguish infinite /^-reduction

sequences of solvable terms as convergent, as opposed to the those of unsolvable ones.

We refine and adapt certain notions developed in the context of rewriting systems to

the A-Calculus (which is not one, in the technical sense), and come up with a notion

of a residue of a term, on the basis of which such a criterion can be formulated. We

propose to associate with any term, the set of its residues, anticipating that these

sets would subsequently be structured into a theory of Types. We explore the order-

theoretic properties of these sets, and prove that a pair of terms possessing identical

sets of residues would have the same Bohm trees, and thus be semantically equivalent

in an appropriate sense.

Chapter, 3. In this chapter explore the dependency structure of the theory of Types gener-

ated, eventually, on the basis of the sots of residues of the pure A-terms. We present first

a version of Martin-L6f Type theory (without equality Types), that is essentially the

first-order fragment of the Theory of Constructions; and discuss its standard categorical

interpretation in relatively cartesian closed categories. Next, we present a formulation

within which our sets of residues may (inductively) generate a relatively cartesian closed

category and thus a specific first-order dependent Type theory under suitably de-

fined operations corresponding to dependent sums and products. In this formulation,

we conceive a residue as the representative of an equivalence class of a certain canonical

relation on the set of pure A-terms this being the conception we shall retain eventually,

of a proof-object.

Chapter 4. hi this chapter we present some of the theoretical tools we shall need to repre-

sent the later results in an elegant and abstract way. Dependency structure is ideally

interpreted in the framework of fibercd categories, and we present this theory in a form

that is well-adapted to the interpretation of Type structures namely, the Comprehen-

sion Category framework extensively studied by B. Jacobs recently. We characterize

fiber-wise structure needed to model dependent sums and products, and representabil-

ity conditions needed to model dependency judgements. We prove some of the main

results we would utilize in the sequel.
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Chapter 5. In this chapter, we continue the explication of the theory behind the categorical

interpretation of (full) constructive Type theories. It is impredicative quantification (or

polymorphism) which is the most delicate to model, and we present the framework of

internal categories witkin which the forms of completeness required for the interpreta-

tion may be elegantly represented. We explicate the complementarity between internal

categorical and fibered modes of representation, and emphasize the usefulness of being

able to shift from one to the other. We present the remarkable notion of a full internal

sub-category and underscore the close relation between its limit structure, and that of

the ambient category; we use it to define structure in internal categories. We spend

some time in relating fibered and internal modes for base categories which do not have

all pullbacks, but only a basic display map structure. Finally, we present the full Theory

of Constructions, and an elegant categorical model described by B. Jacobs, and known

as a CC- Category.

Chapter 6. In this chapter, we complete the development of Chapter 3: we present the

induction of a (full) Theory of Constructions on the basis of the sets of residues (of

equivalence classes) of the pure terms, under operations corresponding to dependent

and impredicative forms of quantification. Methodologically, this is accomplished by

generating a CC-Category under the operations mentioned. This entails, on account

of the theory explicated in the previous chapter, that the sub-system of the Types

may be conceived as a full internal sub-category of the base category (of the CC-

Category), in fact what may be described as a full internal relatively cartesian closed

category. This accomplishes to a great extent, our objective of developing what we have

characterized as the constructive semantics of the calculus. The interpretation of the

Theory of Constructions in some suitable topos is quite standard, and we do not labour

it. Instead, in the sequel we address the question of developing some of the standard

denotations] theory on the basis of our category of Types.

Chapter 7. In this chapter we present some of the theory behind a "concrete" topos model

of dependent and impredicative Type theorynamely the interpretation in the Moggi-

llyland Itcalixability Topos. Wo present so.no of standard structures involved in the

interpretation specifically the (sub-)categories of the w-sets and the modest sets. We
explicate the completeness structure needed to model polymorphism and dependency-
switching between internal and iibcred modes of description. We explicate the notion of

the internal logic of the topos, and the interpretation of intuitionistic logic in the latter.

Finally, wr embed the relevant categorical structures identified in the last chapter into
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this standard framework: wo prove that thereby our category of Types is embedded as

a full internal sub-category of the <j-sets (and hence of the readability topos), that it

is internally a full sub-category of the category of the modest sets, and finally that it

has a certain restricted form of completeness when so embedded (relative to a certain

sub-category of the cj-sets).

Chapter 8. In this chapter, we shall carry out some of the standard denotational construc-

tions within the topos of the previous chapter. Intuitively, the set of residues of a term

carries a partial order, and in fact is a directed set under it. The set of all residues

is a domain under directed completion, and a canonical denotation of a term may be

obtained as the least upper bound of its set of residues. We shall show that this intu-

ition is conserved even as we refine the notion of a residue into that of a proof-object

(i.e. an equivalence class) and thus in the category of Types embedded in the topos

as described in the previous chapter. We carry out the directed completion and obtain

thereby, a small category of domain-theoretic objects (in the topos); and carrying the

canonical denotations of the terms as least upper bounds of the corresponding Types.

We prove that this category is internal cartesian closed, in remarkable analogy to the

prepositional case. Finally, we recast the constructions in a synthetic form: that is,

we identify a suitable object of computable truth-values, on the basis of which the

partial-order structure on the objects of our denotational category appears as intrinsic

structure. Thus, we have a category of (synthetic) domain-theoretic objects that can

sustain the standard denotations of the pure terms, and which are logically, a small

category of sets, with full function spaces.



Chapter 2

Residues

A formal analogy between the Type represented by a Proposition (under the Curry-Howard

isomorphism), and the Type represented by a A-term (under an analogous notion), can be

initiated if we have some idea of the objects that could function as the analogue of proofs

of propositions. A fairly simple idea may aid us here: if a pair of propositions represent

isomorphic Types, then every propositional context has the same truth value when either of

the pair is substituted into it. Taking truth to be the reference of propositions, we would

be justified then, in looking for a class of objects correlated with each A-term, such that if

two such classes bo isomorphic, the corresponding terms would cause every A-context to have

the same normal form under their substitution. Refining the notion of normal form to head

normal formwhich may be be thought of as a minimal notion of reference (i.e. to the point

of defined ness) we would have the following precise formulation

=*VC[.].C[x] =,,(%] (2.1)

where C[-J is an ai biliary A-ronlext, in =;a
n means that the terms 777, and n have the same

head normal form, and f x is the notation we shall use for the Type of the term x. This

formulation indicates that we should look for the objects constituting / x within the theory of

Solvability. Accordingly, we shall address first the conditions under which (a possibly infinite)

^-reduction sequence for a term may still be considered to yield a valid semantic value.

2.1 Convergence

Much of the arguments of this set lion were formulated by Wadsworth ([89]) and llarcndrcgt

([5]). We re-arrange them in order to extract the information that would be significant for

our purpose. As we a,e uwa.re, Icims having a normal foim admit readily the notion of
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semantic value which is simply the normal form itself, or some suitable interpretation of

it in a semantic domain. It is well-known, that of the remaining class of terms, not all

may be deemed as meaningless: the unsolvable terms may consistently be equated to some

meaningless token, while there exists a residual class which have no normal form, but may
be deemed meaningful

1
. Let us try to understand the situation by comparing the following

^-reduction sequences:

(\x.xx)(\x.xx) >

(Xx.xx)(\x.xx)
>

(Xff.(\x.f(xx))(\x.f(xx))) >
\f.f(\x.f(xx))(\x.f(xx)))

-..

the first is an example of an unsolvable term (which we would denote as 12), that may be

thought of us meaningless; the second is a solvable term (which we would denote as y),

which may be considered meaningful though it has an infinite reduction sequence. One of the

differences between the two cases which may strike us, is that the latter derivation leads to

something like an infinite normal form while the former yields an unsolvable term even in the

limit. We can take this as the point of departure and try to arrive at a formal characterization

of this diflerence. A promising perspective is that of term-rewriting: the A-Calculus is not

a term-rewriting system technically (cf. [11, 31]), but we could try to apply the criteria

developed for infinite rewriting sequences and see precisely where they arc wanting. Since

the analysis would involve infinite reductions (and hence, infinite terms), we make these

notions precise (using the formulation of [15]).

Definition 2.1.1 Let E denote the set of finite sequences over the set of natural numbers H.

We denote the prefix order on Y, as <, sequence concatenation by *, and the sub-sequence

relation by d. We shall consider an alphabet consisting of a dcnumerablc set of variables U,

a U-indexed set of unary opcmlors A =
{Ax} r u, and a binary operator . For any element

T of this alphabet, we shall denote by ar(r), the arity of T (with variables considered to be of

zero arity). A A00 -term \ i.s defined to be a partial function x - % -* ^U^UH subject to

the following conditions.

1. a doin(\) =$> V0 -< a. </> dom(\)

2. For any a dom(\), we define the out-dcgrec of o by

Out(a) - CW({< dom(\)\3m N.< = * (")})

Then we shall have that

a <lom(\) => Out(a) - w\\(a}}

*\\\ fad, it in mroriAM/rrif (with rrganl to llir theory of /?-r<|iia1ily) to equate Rurh terms to llir unsolvablc

terms
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We have the usual notion of (3- reduction

(Ax.M)TV
> M(N/x)

on the set of terms A00
. Thjs generates a rewrite relation (we may sometimes abbreviate

this simply as (3) on A
00

in the usual way, and we call the resulting rewrite system, the A-

Calculus.

The inclusion of infinite terms in the language sanctions infinite reductions; hence we

have to formalize the notion of the limits of trahsfinite reduction sequences. We shall follow

the methodology of Dershowitz et al. ([15]), and topologize the set A
00

through a metric d.

Definition 2.1.2 For a pair of terms s,t A00
,
we define the distance between them by:

where d(s, t) is defined as follows,

d(s,t) = min{H|<7 dom(s)f]dom(t),s(a) / t(0)} for s ^ t

= otherwise

in which
\ \

denotes the length function for sequences.

It is known that with this metric, the set A00 forms a complete ultra-metric space (cf.

[56]). This allows us to define a notion of convergence of a finite or transfinite sequence of

terms.

Definition 2.1.3 For a finite or transfinite sequence of A
00
-terms (^)^<H indexed by ordinals

7 less than some ordinal K, we say that a term t is the limit of the sequence (equivalently,

the sequence converges to t written as

if, for any neighborhood V of t, there exists an ordinal a < K, such that Vj : a < 7 <

K. s^ V'. We have the obvious generalization to sequences indexed by ordinals in some

range between a pair of ordinals a, 7, which would be denoted as (s^) \

As we know, this formulation of convergence in terms of countable sequences is fundamentally
limited 2 and our objective in this section is precisely to work towards a more abstract

formulation (in terms of filter bases or centered collections; see [16]). We may define the

notion of a derivation in the A~-Ca,lr..l..s, on the basis of this formulation of convergence

'For instance it is impossible to <M,m- ami analyze the topoloW of an uncountable w t of topoWical
aces, or formulations in analysis (classical integration theory), within the framework of countable sequences.
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Definition 2.1.4 For the reduction relation 0, and an arbitrary ordinal K, we define the

K-itei-atc (or the K-transitivc closure) of (1 symbolized as ^>p, as follows:

If K = then the K-iterate ^+0 is simply the identity relation;

If K is a successor ordinal i + 1 then ^0=>p \J ( ^ o
>$);

If K is a limit ordinal then for terms s, t we have s % t if s ^p t for some i < K, or

there exists a sequence of terms
(s^)^<K

such that $ % aM for all v < p < K and

linip-K JM
= t.

A derivation of length K with respect to the reduction relation (3 is sequence of terms (^M ) /1<K

such that sv % s^ for all v < fi < K. We say that the derivation converges to a term t if

the limit of the sequence of terms constituting the derivation is the term t.

We may generalize the notion of derivation to arbitrary (binary) relations R over A00 in the

obvious manner.

This gives us the basic framework to reason about infinite derivations and terms. The basic

approach within the tradition of term-rewriting systems is to consider, for arbitrary ordinals

a, derivations of length a which have a limit and define such derivations as normalizing

or otherwise, if that limit is a normal form, appropriately defined. We have the following

definition in [15].

Definition 2.1.5 (/15, Definition 4.1]) An a -normal form of a term s in A00
, for an ordinal

a, and with respect to the reduction relation R, is a term t such that s ^R t and t >R t'

only ift' = t.

We see of course that this would not do for us: both derivations, for ft and Y considered

above would turn out to end in normal forms on this criterion. Hence, we define a normal

form in a more direct manner as follows.

Definition 2.1.6 A \-term t is said to be in 0-normal form ifffor no sequence o dom((),

is the value of t(v) a fl-redex.

A /3-redex is, as usual a (sub-) term of the form (\x.M)N: thus, a term is in normal form

if and only if it has no finitely accessible occurrence of a /3-redex. We may reformulate

Definition 2.1.5 as follows.

Definition 2.1.7 An a-normal form of a term s in A00
, for an ordinal a, and with respect

to the reduction relation 0, is a term t in (3-normal form, such that s >0 t.
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We shall try to characterize infinite meaningful /^-reductions a* those which converge (in

the most general topological sense) to normal forms. We shall work within the topology of the

ultra-metric space obtained on the basis of Definition 2.1.2. We need the following auxiliary

notions. x

Definition 2.1.8 Let Al denote the set of (finite) \-terms augmented with a constant 1.

For an X-tcrrn N, we may define a rorrcsending Al-/rrm \N"\ (its residue; as follows

(the notational conventions used are standard: Xx is used to denote a generic sequence of

X-abxtmclions, the comjxnunls vnriabh s of which may lx taken to Itr x\ %
.. .,xn ):

{Xx.

l if N is not in hnf, and has the form \x.M

Xx.y\M } ]
- - \Mn ] if N has the hnf Xx.yMl Mn

where "hnf" is an abbreviation for head normal form.

The same notion appears in Barendregt in connection with a discussion on continuity ([5,

Definition 14.3.6 (ii)]). Al-tenns may be thought of as denoting sets of A-terms by the

following convention.

Definition 2.1.9 for any term t A00
,
and a XL-term X ,

we say that t extends A', (written

as t> X) iff

doin(.V) C dom(J)A Vr7 ^ dom(A'). A'(a) ^ 1 => t(a) = X(o]

thus, in an intuitive sense, if we understand that the occurrence of 1 to denote "undefined",

then t > X simply means that as functions, t extends X. We shall use > for the obvious

partial order obtained on this basis. We define the extent [] of a XL-term X as follows.

[X]={t\\t>X}

In the sequel, we would be extending the extension relation to Al-terms, defined in the same

way as above. Note that for Al-terms X and K, if X > Y, then [X] C [Y].

Now consider a /^-reduction sequence (that is, a derivation) (X) of length a:

We have the sequence of Al-terms (pf,l) 1<rt ,
and thence the sequence of sets of A-terms

([rA'l]),<a- We can easily verify tlic following property.

Lemma 2.1.10 lor all < i < n
,
wr have thai [[*,+ , ~|]

C [\X t ]].
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Proof: For any term X, in the sequence, we must have that the succeeding term A",+i is

obtained by contracting a /?-redex in Xt . The residue \X<] would have had a at the

occurrence of this redex, while \Xi+l ] would either have a /3-redex at the same node,

or a non-redex. Hence pf,+i"| > \X<] y
and thus [pf,+i"|] C [\Xt ]].

Let us review briefly some notions of convergence from Topology: an excellent reference

is [16, Chapter X 2].

Definition 2.1.11 A collection of subsets of a Topological space is said to be centered if

the intersection of any finite number of them is non-empty. A centered collection of subsets

converges to a point x 6 X (in a topological space (X, O)) if for each neighborhood Ox of the

point x, there exists a member of the collection contained in Ox .

It is quite clear that the collection ([pOl]) t<ct
of sets obtained from the /^-reduction sequence

(X) above is a centered collection of sets. We have the following proposition.

Proposition 2.1.12 // the derivation (X) converges (in the sense of Definition 2.1. S) to a

term x 6 A
00

in ft-normal form then the centered collection of sets ([\Xi]]) i<Q converges to

x.

Proof: Suppose x is finite: then the last term of the derivation (X) must be x (apply

definition of convergence, and note that finite terms are isolated in the topology), and

in that case fx] = x or [[x]] {x}; hence any neighborhood Ox contains {x} and the

proposition is trivially true. Now suppose x is infinite; let the length of the derivation

be a; then, the definition of convergent sequences tells us that for any neighbourhood

Ox of x, there exists some ordinal K < a, such that \/7 : K < 7 < a. X^ Ox . In

other words, for any depth d N characterizing Ox ,
there exists an ordinal K < a, such

that all terms in the derivation after XK agree with x up to depth d. Since x has no

finitely accessible /?-redexes, this means that for any such neighbourhood, there exists

an ordinal K < a, such that all terms in the derivation after XK have all /?-redexes at a

depth greater than the corresponding depth d. In that case 7*7 : < 7 < a, the extent

of the residue of A~7 must be contained in Ox . Hence the proposition.

We also have the converse.

Proposition 2.1.13 The derivation (A) (of length H) conveiyes (in the sense of Defini-

tion 2.1.3) to a term x 6 A00 in ft-normal form if the centered collection of sets ([\Xi]])t<a

converges to x.
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Proof: By hypothesis, every neighborhood of Ox of x contains an element of the centered

collection. Now, for any neighborhood Ox ,
we have a depth d such that Ox contains

ail terms which agree with x up to depth d. Hence, our hypothesis tells us that for

every such neighborhood, and thus every depth <f, the class of terms that agree with

x up to this depth contains a set from the centered collection: in particular, we may

say that for every depth rf, the class of Al-terms that agree with x up to that depth

include the residue of a term of the derivation. But any residue has the property that

it has no occurrence of a /3-redex. Thus we have that at no (finite) depth does x have

a /3-redex which gives us the proposition.

Thus we can see that the notion of the residues of a term allow us to arrive at a completely

general criterion for the meaningfulness of those infinite derivations which end in an (infinite)

normal form (as distinct from those which don't): moreover, this criterion is seen, on the

basjs of the last couple of propositions, to be equivalent to the one formulated in terms of

countable sequences. We have thus some ground to believe that the sets of residues of a term

epitomize, in some way, the contributions to its net semantic definition. Accordingly, we shall

explore the idea that the class of residues of a term, which we formally define as

N ~{\N'}\N N'}

(for a A- term JV, and where we use A as the normal transitive-reflexive closure of the J3-

reduction relation) may be used as the Type of a term, in analogy with the Curry-Howard
isomorphism for propositions and the Type of their proofs. In other words we are proposing
formally that the class of residues of a term may be taken to function akin to the class
of proofs within a constructive theory of Types which is constructed on their basis This
program will be initiated in the next chapter and the denouement shall take up most of
the sequel; in the remaining part of this chapter we make good our conjecture made in
Lquafon 2.1 -nan.Hy that if any two term, have the mw dMi of residues, then for every
context, their substitution yields terms with the same head normal form (in some suitable
sense under which head normal forms may be deemed to be the "same"). The basic theorywor ed t 1D Barendfegt ((fii Chaptef ^ ^ chapter ^ ^ J ^more direct proofs of the relevant theorems.

2.2 Semantic Equivalence

We start with a few definitions.
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Definition 2.2.1 A term is said to be in head normal form if it is of the form Ax.j/Af t
--Mn .

The head segment of a term in this form is Xx.y. Let k be an element of the finite non-

empty sequences over the natural numbers. The k-reduct of M, written as (M l)k is defined

inductively as follows:

( Af i \ _ ;
"" if k = (i), t < n, and principal hnf ofM is \x.yM\ - Mn

(i), and M' = (M l)k ,

where the principal hnf is the last term of the head reduction sequence of M; the k-reduct is

undefined if any of the clauses of the definition is not defined. If k is an element of finite

sequences over the natural numbers, then we define the k-head segment of a term M, written

as (M [)
k

, inductively as follows:

i of the principal hnf ofM if k = ()

(M' 1)0 where M' = (M [)k

Definition 2.2.2 The Bohm representation of a term M, written as B(M) is the following

inductively characterized tree: if M is not in head normal form then B(M) is simply the

single-node tree _L; otherwise, let M have the form \x.yM\ - Mn : then B(M) is defined to

be the tree given in Figure 2-1.

Xx.y

__ }
<

[

Figure 2-1: The Bohm representation.

This definition generalizes in the obvious way to the Bohm representation of residues, and

contexts. We state a few simple propositions, some of which would be useful in proving the

main theorem.

Lemma 2.2.3 For terms M andM', such that M -^ M', we have that B(\M])C B(\M']),

where C is the containment oitler on trees with i. considered as representing an undefined

value.

Proof: This holds trivially if M is not in hnf. Otherwise M is of the form Af.yM\ - Mn ,
and

we must have that M' =
Af.yA/,' M'n ,

where M, -^ M( for all i in the appropriate

range. Hence the Bohm representations are identical up to depth 0. Now applying the

reasoning inductively to the reductions M t
-^ M{, we have the proposition.
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Remark 2.2.4 We .hall n,r the rr/r,Wum onirr < fcf. Definition 2.1.9) interchangeably

with the containment order C. It easy to see that B(\M]) < B(\M'}) 4 and only if

\M] < fM'l, for terms M and M '.

Lemma 2.2.5 For terms M, M,, M2 such that M -1* M l and M -^ Mt ,
we would have

that B(\Mi]) and #(|"Af2 "|) are compatible.

Proof: By the Church- Rosser theorem we have that 3M3 .A/,
-=- A/3 A^2 -^ M3 ; By the

Lemma 2.2.3 we have that 0(fAf,l) C B(\M3]) and B(\M2]) C B(\M3]) 9
and hence

the proposition.

Lemma 2.2.6 The set of residues f M for any term M is structured as a directed set under

the extension order < for residues.

Proof: Consider any two elements [Mil, fA^l in the set /M '
we have of course that

A/ _!_> A/, and M -1* A/2 ; by the Church-Rosser theorem we have that 3M3 . MI -^

M^f\M2 -^ M3 ,
and Lemma 2.2.3 tells us that \M*\ > \Mi] and \Ms\ > \M*\\ and

of course [A/3] f M and hence the proposition.

Definition 2.2.7 A XL-term is said to be in partial normal form if it has no occurrence of

a (3-rcdex. A -redex is a sub-term of the form 1M, with M A_L.

Lemma 2.2.8 Consider the following jyosct: [A]
=

{ \M] \
M A), with the extension order

< . It has the following properties:

1. every comjxitiblc jmir i, j/ [A] has a least upper bound in [A];

2. every finite directed subset has a least upper bound in [A] .

Proof: Since x and y aro both Al- trims, and wo know that, under the extension order, the

poset Al is (finitely) consistently complete, we have that lub of x and y exists in Al.

It is also easy to see that for x and y in partial normal form, their lub too would be in

partial normal form; also, for any term z in partial normal form, there exists a A- term

-' such that |y| = 2 (just replace every occurrence of 1 in z with ft). Hence the lub of

x and y is in fA]. As for two, we use the fact that Al is directed-complete under the

extension order, and the lub of a finite set of terms in partial normal form is a finite

term in partial normal form.

Lemma 2.2.9 for a term M A, and k dom(B(\M])) we have that

8(\M])(k) = J (^ D* lf(M {}k is in head normal form

\
-L otherwise



2.2. SEMANTIC EQUIVALENCE 25

Proof: Uy induction on tlio length of k. The proposition ran easily bo soon to hold for

\k\
= and \k\

= 1. Let us suppose it is true for \k\
= n, and consider an appropriate

k = fc' (t) where |fc'|
= n. Let (M [)k , = \x.yMl

- - Mn ; by induction hypothesis,

B(\M])(k') = (M 1)*'; now if M, is not in hnf, then we would have that B(\M])(k) = 1

(by definition of fAf|); otherwise we would have that B(\M])(k) = the head segment

of M,; hence the proposition.

Let [A]
00

denote the directed lub-completion of the poset [A]: that is #(A) is obtained

by formally adjoining to |"A"|, the (possibly infinite) terms corresponding to the least upper

bounds of directed sets of A_L-terms. It can easily be seen that
|"A"|

is a consistently-complete

algebraic cpo.

Definition 2.2.10 for any \-term M, let oo(M) denote the lub V(f M) in \\]; by

Lemma 2.2.6 we have that fM is structured as a directed set, and must have an lub in

M".

We icproduce without proof, a simple though important proposition from Barendregt.

Lemma 2.2.11 (/5, Lemma 8.3.16]) Let M = Af.yM, - Mn ; ifM -^ TV then:

N =
Af.yTV, Nn and M, -^ TV, for 1 < t < n

Corollary 2.2.12 ([5, Coro//ary 8.3.17]) 1. Let M be in head normal form, and M -^

TV: then N is in head normal form

2. Let M have the head normal forms

Xxi"'Xn.yNi-"Nm and

\x l
." Xn,.y'Nl.~N'm ,

then n = n', y
=

j/', m = m' and TV, =0 TV,' for 1 < t < m.

Lemma 2.2.13 For terms M} ,M2 A, if3N.Mi -^ TV f\M2 -^-+ TV then MI and MI

must have the same ()-hcad segment.

Proof: If either is already in hnf, then TV must also be in hnf and must have the same

head segment as the former; hence the other must have the same head segment too.

Otherwise, if TV is in hnf then the proposition follows immediately; otherwise, let TV'

be a. hnf of /V; then the pioposil.ion follows by tlio previous consideration.

Corollary 2.2.14 Interconvertible terms have the same ()-hcad segment.
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For A-terms A/, N such that M -^ tf ,
we shall in the sequel, by abuse of notation, write

M-+\N]. Thus, for some Al-term />, we would write M -^ /> to mean that for some

A-term AT, M -^ TV and P = \tf\. We would extend this usage to cover the following:

for P Al, M A, we srrall write M P, if for some extension N > P, we have that

M -^JV.

Lemma 2.2.15 Le< X M, <m<* X = V{*. I /}

some k 6 dom(#(*)), we have that B(X)(k) =-s iffli

Proof: Immediate, from the properties of trees and thoir Ira^t, tipper hounds.

In the sequel, we shall take contexts []* to be in their Bohm representation; this implies

that the occurrence k is determined by this representation. We have the following important

proposition.

Lemma 2.2.16 We have the following equivalence: for k 6 dom(#(oo(M )))

6(oo(Af ))(*)
= Ax.y <* 3C[-] fc

. 37V G A. M -^ C(N] k /\(f* [fi = Ax .y

with the context C[-]k in its Bohm representation.

Proof: =>: By definition, we have that oo(M) = \/{\M'] \M -^ M'}; by the previous

Lemma, there must exist some M', such that M -^ M' and #( [M '1 )(k)
=

A.y; which means that the Bohm representation of M' must be of the form

('[Ar.t//V| /V,,,]ji
for some context C'[-]x (in its hohm representation).

<=: Suppose M -^ C[N]k for some context C[-]k in its Bohm representation; without

loss of generality, we may assume that TV is in the head normal form, and of the

form Xf.yNi /Vm ;
then we would have an element in / M with the fc-th node of

its Bohm representation labeled by Ax.y; hence, by Lemma 2.2.15, the proposition.

Lemma 2.2.17 Suppose there exists context C[-]k (in the Bohm representation), such that

for some N A, M -^ C[N] k ; then, for any other context C'[-]k (in the Bohm representation)

and N 1

e A such that M -^
C'[N'] k ,

we must have that N - N 1

.

Proof: We can see that C[/V]jt is the Bohm representation of some term P; and all redexes

of P occur in sub-trees that do not overlap with
fc; similarly there would be some term

Q such that C'[N] k is its Bohm representation, and all rcdcxes of Q occur in sub-trees

that do nol ovcihp with k. Thus A/ -*-* /' and M -1* Q- tlion by the Clmrch-KcMmv

Theorem, and uring the fart that sub-trees are not affected by reductions in other

sub-trees, the proposition follows.
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Corollary 2.2.18 Suppose

3C[.] fc
. 3JV A. N =

Xx.yNt . . . Nm and

VJ
. . .

jy^, and

then we must have that x = z,w = j/,m = m' and for 1 < t < m we have N% =0 TV/; t/e

contexts C,C' are assumed to be in the Bohm representation.

Proof: By the same reasoning as above, and Corollary 2.2.12.

We have the main theorem.

Theorem 2.2.19 For any M G A and k 6 dom(oo(Af )) we have:

B(oo(M))(k) = (M i)*

Proof: We proceed by induction on the length of k.

Case \k\
= 0: thus k =

(); if M is unsolvable then the proposition holds trivially;

now all N in hnf such that M -^ N must have the same head segment (cf.

Corollary 2.2.14) say Af.y; then we have 5(oo(M))(( = Ax.y = (M |)0.

Case \k\
= 1: let k =

(t) for some '; consider any hnf of M say Xx.yM\ Mn : any

other hnf would be of the form \x.yM{ M'n \
with A/, =p M[ for all appro-

priate t; in particular, for any of the head normal forms \x.yM\ -Mn , any A/,

would have the same ()-head segment (across the head normal forms of M ) (by

Corollary 2.2.14). Hence the proposition holds in this case.

Hypothesis: Assume the proposition true for all (appropriate) sequences k with

|*|
< n.

Case |*|
= n + 1: Suppose k = k' (i): by hypothesis 5(oo(M))(fc') = (M 1)*'; by the

Lemma 2.2.16 we would have a context C[-]jb (in the Bohm representation) and

some term TV in head normal form (N = kx.yNi - Nm ) such that M -?-+ C[N]v

(and thus #(oo(Af ))(k')
= (M |)

fc/ = Af.j/; if such an N in hnf did not exist,

we would have had B(oo(M ))(k') =1); also, for any other context '[]* (in the

Bohm representation) and term N 1

in hnf such that M -^ C'\N']k i, we would have

by Corollary 2.2.18 that N' is of the form Ax.yJV,' N'm with N
3
-

ft 7VJ
for all

appropriate j. MCMICT for all such j, wo would have that Nj and N'
}
have the same

0-liead segment (by Corollary 2.2.14), and hence, in particular, B(<x>(M))(k) =

(M \)
k

.



CHAPTER 2. ItESlDVES
28

Now recall the definition of the IJolun tree, of a term, which we reproduce below.

Definition 2.2.20 (cf. [5, Definition 10.1.4]) The Bohm tree of a term M, written BT(M)

is a single node labeled 6^1 ifM is unsolvable; otherwise, if the principal head normal form

ofM is \x.yM l
- - Mn ,

it it is the inductively defined tree shown in Figure 2-2.

\x.y

BT(Mn)

Figure 2-2: The Bohm Tree.

From this definition and the relevant results above, we have the following proposition and its

corollary.

Proposition 2.2.21 For k dom(#T(M)), we have that BT(M)(k) = (M |)
fc

.

Proof: Immediate.

Corollary 2.2.22 If two terms M and N are such that / M = f N, then BT(M) = BT(N).

Proof: Immediate, from Theorem 2.2.19.

Hence, the set / TV for any term N which we shall henceforth call the A-Type of N has

all the information from which the Bohm tree may be constructed: and in fact it has more.

What we call the A-Type and symbolize as f N (for any term TV), goes in Barendregt under

the symbol C'(N) (cf. [5, Definition 14.3.6 (iii)]); we have the following proposition (from

Barendregt) which indicates how this set governs the semantic behavior of the corresponding

term in arbitrary contexts.

Theorem 2.2.23 ([5, Coronary 14.3.20]) For an arbitmry context !>[], and a term M, we

have that

BT(V\M}} =
\J{BTCD[x])\x C'(M)}

Hence, we have the easy corollary:

Corollary 2.2.24 For terms M and N
, if f N = f M then for any context C[-] we shall

hnw //i
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Hence referring hark to Equation 2.1, and tho considerations we started with, we ran claim

that the A-Types epitomize all the salient semantic information for the corresponding terms,

and we may consider further the possibility of constructing a system of (Curry-Howard)

Types on their basis. This is the subject of the next chapter, where we structure the A-Types

into a system admitting an interpretation of a theory of Dependent Types.



Chapter 3

The Theory of Dependent Types

This chapter is structured as follows: in the first section we have a brief description of an

Intuitionistic Theory of Types: this is essentially Martin-Lof's Type theory (without equality

judgements), or in other words, the dependent first-order fragment of Hyland-Pitts' presen-

tation of the Theory of Constructions. We present the syntax of the Types and terms, and

the rules for the inference for judgements; we also discuss the various issues in its interpre-

tation, and present a categorical model for it. In the next section, we structure the A-Types

of the previous chapter into a relatively cartesian closed category which is a general frame-

work for the interpretation of a theory of dependent Types. In this, we conceptualize the

residues as (representing) equivalence classes for a certain equivalence relation (on the set of

A-terms). Thus, in general, a A-Type is structured as a collection of equivalence classes and

can be thought of as a jxirlial equivalence ivlation on the set of A-tcrrns. The precise motiva-

tion behind this formulation would become clear in the later chapters, when the category of

Types would bo structured as an internal category within a standard categorical model for

polymorphic calculi.

3.1 Intuitionistic Type Theory and its Interpretation

hi this section we provide an overview of a theory of dependent Types the term syntax and

the structure of judgements and the significant aspects of its categorical interpretation.

3.1.1 A Theory of Dependent Types

As the preliminary slop in tin* ronsl.Mirt.ioii of a full theory of constructive Typos, wo shall

extract the fragment on dependent, Types from Martin- Lof's Intuitionistic Typo Theory ([53,

50, 51]), but. not. including equality Types. The relevant fragment is taken from the lino study
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of Hyland and Pitts on the Theory of Constructions ([38]). The theory consists of judgements

J made in contexts F and symbolized as:

Mr]

The judgements we shall be concerned with in this chapter have the forms:

A

s e A

A = B

s = t A

The first expresses that A is Type; the second, that the term s is a term of the Type A; the

third, that A and B are equal Types; and the fourth, that s and t are equal terms of the

Type A.

We shall use upper-case letters (or greek letters) for Types, and lower-case letters for

terms; variables would be denoted generically by the letters z,y,z,u;. Contexts are sets

of variable declarations, partially ordered by the pre-supposition relation, which we explain

below. Judgements are always made in contexts, which declare the Types of all the free

variables occurring in it. Variable declarations have the form:

z P

which can be seen to be a particular kind of judgement. A variable declaration is said to

presuppose another if the former has an occurrence of a free variable, which the latter declares.

For any variable declaration J, we shall denote the variable declared, generically, as /, and

its Type as Pj. More formally, we define a context as follows.

Definition 3.1.1 A context F = (F,<) is a poset of variable declarations satisfying:

1. The elements of F are variable declarations and distinct variables have distinct decla-

rations.

2. If J e F then J [F|j] is a judgement of the theory, where F|j = { J' \
J' < J}.

We shall write [J, F] to denote tho context with ,/ as its maximal element, and given two

disjoint contexts F, F', we write [F, F'] for the context formed by their union ordered such

thai everything in F' is greater than anything in F; finally if J # F, then [J > F] denotes the

context formed by adding ./ to F as the maximal element.
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The general ruin, of the Type theory would he familiar fro,,, a study of Martin-lxifRyto,n.

Other than the rules of reflexivity, transitivity and symmetry for the equality relation, we

have the derivational rules as in Table 3.1. Along with them, we also have ageneral principal

of substitution, which is asTollows.

Definition 3.1.2 An interpretation of a context F in another context A consists of a function

p assigning to each judgement J in F, a term pj such that for each J in F,

is also a judgement of the theory; then the general principle of substitution is, that whenever

J [T] is a judgement of the theory, and p is an interpretation of F in A, then

J(l>J'ltj'\J'l)[*]

is also a judgement of the theory.

The rules in Table 3.1 are labelled according to the following conventions: a typical label

is of the forms X-Y-N or X-N, where X is a symbol from the set {!,,!!, C, E, S, A, W]

and interpreted respectively as Unit, Sum, Product, Constant, Equality, Substitution, As-

sumption and Weakening; Y shall be from the set {F, /, E, =} and interpreted respectively

as Formation, Introduction, Elimination and Equality; the number N would be optional and

label multiple versions of a clause.

As we can see from Table 3.1, we have eliminated equality types: these constrain the

class of models, and particularly, the model we shall be considering does not support them.

Following llylaml- Pitt's adaptation, we have used constants fsl and snd for projection rather

than elimination constants. This can be done as long as we consider a single "level" of

Types: adding a second level of Orders, and requiring rather strong closure conditions on the

quantification of Types over Orders leads to paradoxical situations, and we must use rules

given in terms of elimination constants rather than projection constants (cf. [38, 1.9]). The

E rules are the ones for existential quantification and are known as the "Sum" rules; the II

rules are for universal quantification and are known as "Product" rules. The rule Constant

Introduction allows the introduction of (non-logical) constants into the theory. This theory

can be shown to be the theory of the proofs of (intuitionistic) first-order logic ([48]).

3.1.2 The Categorical Interpretation

Historically, thr categorical interpretation of Type theory, takes its cue from the work of

Lawvere who used indexed rati'Rnries, with Koine additional structure (these are known ;u<



/(*,,...,xn )64[r]

3.1: T\\c System of Dependent Types
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Hyperdoctrines) to interpret first-order logic ([47, 76]). The fundamental insight that the

syntactic properties of quantification are such as to make it possible to represent them as

adjoints to substitution, is a basic theme that runs through almost every kind of subsequent

categorical interpretationV logic ([46, 76/78]). Martin-Lof's theory of intuitionistic Types

added a nuance to this: predicates on a Type were also Types (dependent on the former),

and hence objects of the base category; proofs, which had previously been relegated to the

fibers (as morphisms) in models of classical logic, returned as first-class citizens of the base

category- as terms of the base Types; the models of this kind of Type theory was a compact

object known as a locally cartesian closed category essentially a cartesian closed category

with cartesian closed slices. These were shown to be models of Martin-Lof Type theory with

equality Types ([77]). Certain other considerationssuch as the need to have full recursion

in these models, and hence fix-pointsled to their generalization: essentially, the existence

of equalizers in cartesian closed categories does not go well with the requirements of fix-

points. The removal of fix-points necessitates the designation of a class of morphisms in the

category as representing Tyi>e dependency. Such morphisms were called display maps by

Taylor, in his pioneering work on such systems ([85]), and the resulting categorical structures

were axiomatically studied by Hyland and Pitts under the name of relatively cartesian closed

categories ([38]).

As the title of this chapter indicates, we shall use the framework of Hyland and Pitts to

assimilate our theory of A- types (and other sets of residues). In the rest of this section we shall

briefly indicate the main features of these structures and how they allow the modelization of

the Type theory given in Table 3.1. In categorical model theory, we usually work on the basis

of an equivalence between the category of theories and that of models ([38, pages 162-164]).

This allows a theory to be generated from any object in the category of models, and hence,

our strategy will be to structure our objects as a category in the category of models. We shall

make no pretense of being rigorous in this section: its purpose is merely to give a description

of the various features of the model in light of the syntax of the theory it interprets, and not

to demonstrate the fact that it is a model.

The paradigm for the interpretation (in a certain category C) is, that the set of Types

dependent on a particular Typo A, is a (designated) full sub-category of the slice over A. The

objects in this slice are morphisms with co-domain A and belonging to a class of morphisms
called display morphisms; we have called them F-morphisrns in our work. This class of

F-morphisms need certain closure proporties-whirh make it a kind of generalized full sub-

category of C (in a fibrrrd sense; cf. [82]). For any object A, the full sub-category of the
slice C/A consisting of F-morphisms, would be denoted as F(A). A judgement of the form
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R(xA] would bo interpreted l,y a F-morpliism ||/?||
-*

\\A\\ (with tho co-domain \\A\\ being

the interpretation of the Type A): this would be an object of F(A) (we shall confuse the name

of a Type with the symbol for its interpretation); in general a judgement of the form B [F]

would be interpreted as an object of ^(||r||), where ||r||)
=

IIj||4j|| the cartesian product

of the interpretations of the maxima/ Types in the context F. A judgement of the form

y B [F] would be interpreted as a morphism ||r||
-

\\R\\ that is a section (a right-inverse)

for the F-morphism \\0\\
->

||r|| that interprets the judgement B [F]. Equality judgements are

interpreted by the equality of the corresponding interpretation morphisms in the category.

We can see that this kind of interpretation would need the category to have finite products.

We would model the substitution rule by pulling back (along the morphism that interprets the

judgement p 7* [F]). Moreover, the Weakening rule could also be seen to be intcrpretable

by pulling back (along the F-morphism that interprets the judgement A [F]). Hence we

must have that our sub-category of F-morphisms be closed under pull-backs over arbitrary

morphisms in C.

The unit clauses imply that the interpretation of \? is an object isomorphic to the terminal

object of C. Moreover, since any isomorphism in C could be thought of as resulting from

pulling back this isomorphism (which is a F-morphism) along some morphism, we would

have that the class of F-morphisms must contain all isomorphisms in C. For certain model-

theoretic reasons, we would use a slightly stronger principle namely, that for any object of

C, the unique map from it to the terminal object, is a F-morphism. This condition ensures an

equivalence between the category of Marlin-Lof Type theories and the category of relatively

cartesian closed categories, and it obtains in our category of Types.

It is well known that the rules for Sums allow it to be interpreted as a left adjoint to the

pullback functor V* : f(A) -
/"(B) for any F-morphism : B -> A ([47, 76, 77]). This

can be easily verified using the general principle of substitution. The specific form of these

rules in terms of projection constants, entails that the co-unit of this adjunction is actually

part of an isomorphism (the other part is the morphism interpreting the constant snd). This

is taken care of by using the fact that (left) composition with a map yields a left-adjoint to

pulling back along it. Hence we would require that our class of F-morphisms be closed under

composition.

Finally, it is also known that the rules for Products allow it to be interpreted as a right

adjoint to the pullback functor V* : F(A) -* F(B) for any F-morphism V : B -* A ([i6trf.J).

Hence we would require that every such pull-back functor have a right adjoint, which we shall

denote as V'H- Moreover there is a technical requirement that the model satisfies the criterion

(known sis the Ueck-Chevalley condition) that "quantification commute with substitution."
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Thi. holds aulomalically for the intrrprotalion of Sum., i"ce in this case the left-adjunction

was given by composition. In the case of products we have to impose this explicitly.

Definition 3.1.3 (The peck-Chevalley condition) Let us have a pullback in C, of a F-

morphism f along a morphism g, and let the fullback cone have morphisms h and k (whose

co-domain i, the domain of g), with k (necessarily) in T . Given this context, the canonical

natural transformation:

k-< o /i* A p* o /H

is an isomorphism.

We may summarize all these requirements in the following definition.

Definition 3.1.4 A Category C is said to be a relatively cartesian closed category, if it

satisfies the following conditions:

/. It has finite products.

2. It has a designated class of morphisms, denoted by the symbol F',
which satisfies the

property that the class is closed under pullbacks along arbitrary morphisms in C.

3. For any object, the unique morphism from it to the terminal object is in the class T.

4- The class T is closed under composition.

5. For any morphism /:/? A in the class T
',

there is a right-adjoint f-\ to the pullback

functor f* : f(A) -* 7(1)) where .F(A') denotes, for any object X, the full sub-category

of the slice category over X, whose objects are in the class f'

. This right-adjoint satisfies

the licck-Chcvallcy condition.

This is the kind of category that we shall prove our category of A-types to be. In categorical

model theory, we usually understand theories to be categories themselves, and hence in

particular, a model for itself. Under the conditions of Definition 3.1.4, we can prove a (bi- )

categorical equivalence between the category of Martin-L6f Type theories (without equality

Types), and the category of relatively cartesian closed categories. Under this equivalence,

every such category, yields a certain theory, whose judgements are exactly those satisfied

in the category ([38, pages 162 16/1]). Hence, to show that the sets of residues interpret

a certain Marlin-Lof Typo theory, it is enough to prove that the category constructed is

rel;Hively i;ufrsi;in dosed We nol.e the e<|.,iv;.lei.re without proof.
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Theorem 3.1.5 (/.7, Cuntllniy, page t<><1]) Tltt-n- in a categorical equivalence between the

category of Martin-Lof Type theories (with interpretations of one theory in another as mor-

phisms) and the category of Relatively Cartesian Closed Categories (with morphisms, functors

that preserve finite products, the class T of morphisms, pullbacks of morphisms in T along

arbitrary morphisms, and right adjoints to pullback functors along morphisms in T).

3.2 A Relatively Cartesian Closed Category of A-Types

In this section we show that the class of A-Types of the last chapter may be (inductively)

structured into a relatively cartesian closed category (under the rules of dependency and

quantification). The critical construction involved in this is to conceive a residue as repre-

senting an equivalence class for a certain equivalence relation over the set of A-terms. Thus,

a A-Type can be thought of as representing a certain partial equivalence relation over A, the

significance of which shall become clearer in the later chapters. The formulation shall take

a syntactic form that is, every Type would have a name within a certain term syntax, and

interestingly, under this representation, the dependency structure of our Types would be seen

to be engendered by syntactic sub-term relationships which is quite natural, perhaps, to the

intuition.

Let us define first the equivalence relation that we shall use throughout the construction.

This is the familiar relation between terms used in the theory of solvability and according

to which, terms arc in this relation if their Hohm trees arc can be "made compatible" through

(possibly infinite) r/-expansions. We shall explicate this relation this relation precisely in a

later chapter: for now, the following statement would suffice.

Definition 3.2.1 The binary relation ~ on the set of \-terms is characterized by the follow-

ing statement:

x ~ y O VC[-].(C[a:] is solvable <4> C[y] is solvable)

where C[-] is an arbitrary \-con1cxt.

Note that this is not to bo taken as a definition, but as a characterization equivalent to it;

this serves our purpose for the present. We can easily see that ~ is a congruence a fact that

we shall use heavily in our formulations in the sequel.

The class of Types which we shall structure into a category, is given on the basis of a

certain syntax defined as follows.

Definition 3.2.2 Ut us have a distinguished set of variables 13, and let us denote by A, the

set of terms of Ihc X-Calciiluft, fftneintrd on this srt of variables. The set A is Ihe smallest
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set of expressions satisfying the following rules:

1. AC A.

8. Ex : a.(3 A, /or^, ft A.

S. llx : a./3 A, for a, A.

We have, in this language, binding operators Ex : a and llx : a, in addition to the standard

one Ax. The rules for bound and free variables are given as follows.

Definition 3.2.3 The variable x occurring in a A-term M is said to be bound under the

following inductive rules.

1. IfM is in the pure \-fragment, then x is bound if it occurs in the scope of an operator

Ax (rf. [,W, Definition 1.10]).

2. x is bound in the scope of the operator Ex : a (equivalently, llx : a) if it occurs in a

(sub-) term of the form Ex : a.(3 (respectively, fix : a.p), and is free (i.e not bound) in

the sub-term (3.

We shall denote by A the class of closed A-terrns that is, terms containing no occurrence of

a free variable according to the conditions defining bound variables just stated. In addition

to the syntax presented above, we shall sometimes emphasize application by enclosing the

applicand in parenthesis: this shall be the rule when we represent A-definable functions as

combinators for instance as the pairing combinator (,), projection combinators TO and TI,

and combinations of these with other arbitrary A-definable functions. We would also embed

combinator expressions in the terms, whenever there is no risk of ambiguity.

We define, on the basis of the equivalence relation ~, an equivalence relation which we

shall denote as ~ tooon the class of A-terms: ~ on the latter class is nothing but the

congruence generated by ~; we state this formally.

Definition 3.2.4 For arbitrary A-tcrm* A, a, we define by A(a/x) the result of substituting

the free occurrences of x in A, by a. The equivalence relation ~ on the class of A -terms is

defined to smallest relation satisfying the following set of inductive rules:

1. ~ on the sub-class A C A is the relation ~ as defined in Definition 3.2. 1;

2. for A-trrms /I, I), we have that A ^ B iff there exist a A-term C with variables

*!,...,* fire, such that A = <>,/*,, . . .
, n/xu ) and U = G'(6i/x lf . . . ,fcn /xn ), for

A-terms a,,...,an anrf &,,..., fcn ,
with a,

~
6, for 1 < t < n.
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We Nliall lMiolo llif ~ <M|uiv;il<>iir<> <-l:u<H nfu A I.<TIII x j, [/-)_, <uiiiM.iiiK |.|,,. HiibH.ript
~ wlim

there is no possibility of confusion with any other equivalence relation.

For each ^-equivalence of A-terms, say [ar], we shall construct a Type and denote it as

f[x]: the elements of this Type would be ^-equivalence classes of A-terms. We define the

notion as follows.

Definition 1.2.5 For any XL-term b, we denote by [b] the "-equivalence class of

where ft is the standard unsolvable X-term (Xx.xx)(Xx.xx). The (partial) operator on the

class of
~
-equivalence classes of A-terms is defined as follows:

/[*)
= iW\t>

J(y)
for some y~x},forxeX (1.1)

a/x)]} (1.2)

a/X )]} (1.3)

With these notions precise, we can define our category of Types, for which we shall use the

symbol 9. Prior to that we need to understand the rather special way in which morphisms

would be defined in our category.

Definition 1.2.6 For the sets X =
f[x] and Y =

[y] with x,y AO, we shall say that

a set-theoretic map F : X > Y is tracked by a X-term f, if for all [a] X we have that

F([]) = [/].

This notion can be seen to be well-defined since the relation ~ is a congruence. As we can

see, there would, in general, be many A-terms tracking the same set- theoretic map. The

morphisms in our category would essentially be maps which are tracked by A-terms. We have

the following definition.

Definition 1.2.7 The category $ has the following constitution:

Objects: Objects arc sets of the form j[a] for a A ;

Morphisms: Morphisms are of two tyj)cs:

F-morphisms: F-morphisms are set-theoretic maps tracked by some X-term, and iso-

morphic to a map of (he form TTO : /[Sz : a./?]
-* /[a] : [(M)] ~ W tracked by

the X-term (eorresending to the eombinator) 7T ;

s-morphisms: s-morjthisiitfi may be defined on the basis of the following clauses:

I. The identity map on any object, tracked by the X-term Xx.x =
/, is a s-

morphixiii;
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2. An s-morphisms F : W* : *.fl

<erm /, <m<* such that for some s-morphism G : f(a]

shown in Figure 3-1 commutes.

some A '

f(l] the diagram

Figure 3-1: s-morphisms.

Wo shall claim that this category is lolativoly cartesian closed. To verify this wo would

go through the list of defining properties of such a category.

Proposition 3.2.8 The category $ has a terminal object, and finite products.

Proof: It can be easily seen that the object 1 = /[ft], where ft is, as usual, the standard

unsolvable term, is the terminal object (up to isomorphism). Every object A' has an

unique map \x to 1, tracked by the term Aj/.ft; moreover 1^ is a F-morphism: it is

isomorphic to the map TTO : {Y,x : \.X] -> 1. Any other object, containing a single

^-equivalence class is isomorphic to 1, and may be thought of as a terminal object too.

As for finite products, it can easily bo verified that the (cartesian) product of the objects

\X\ and f[K] is the object .f[r : X .Y]
* f[y : Y.X]. To see this, note that

and hence the proposition.

We may note at this point that since a F-morpliism is always isomorphic to map * :

f[x : n.fl]
-

f[n], we may assume it to have this general form for most purposes. We
use this convention in the succeeding proofs. We would also abuse language and say "the

F-morphism <j> : LV : a./r when we actually mean the first projection.

Proposition 3.2.9 Th< rlnss of I'-worpkisms is cloxrtl under composition.
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Proof: We consider the following configuration: a F-morphism F : /[Ex : .7]
-*

f[S], where

6 = Ey : a.0, and a F-morphism G : /[Ey : a.ft]
-> f(Q].

Of course, both F and G
are tracked by the A-term TTO . We claim that the composition G o F is isomorphic to

the morphism TTO : /[Ey : a.Ea:' : P.j((y,x')/x)} -+
/[a]. To see this, let us verify the

isomorphism /[Ear : (Ey : a./?).T ]

*
/[Ey : a.Ez' : /J.7y, '>/*)] Consider a typical

element of the left hand side term in the isomorphism; from the Equation 3.2 it can be

seen to be [((a,fr),c)], with

W [7(M)/*)1 (3.4)

W
fWa/y)] (3.5)

W
/[a]

(3.6)

On the other hand, a typical element of the right hand side may be seen to be [(d, (c, /))],

with

(/] e
^((y^'J/^X^/yKc/i')]

that is

[/)
fb((d,e)/x)]

simplifying (3.7)

W
^[d/y)l

(3.8)

W fa] (3.9)

comparing Equations 3.4-3.6 with Equations 3.7-3.9, we can see that the part of the

isomorphism from Ihs - rhs is tracked by the A-term (using pairing and projection

combinators) (ITO o TCQ,(K\ o flo,^)), while the other part is tracked by the A-term

((TTQ, 7T] o
7T(j),7ri

o
TTi). JIcMice the proposition.

Proposition 3.2.10 The class of F-morphisms is closed under pull-backs along itself, and

along the r/a.v.s of s-iiiorpliifHiis.

Proof: Consider F-morphisms : /[Ear : a.ft]
-

/[a] and V : /[Sy : 0.7] -^ /[); we claim

that the pullback of along is given by the F-morphism

0*(0) : l[Vz : (Ey : a.i).p(* (z)/x)]
-+

/[Ey
: a.7 ]

To see this, note that a typical element of the domain is [((a,6),c>] with

[(,&)] 6
/[Ey:-7]

[r] f[ft(vo(z)/r)(("il>)/z)],
or simplifying

[r] 6
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Hence the domain is essentiaJly the set-theoretic pull-back (over the equivalence classes

of the relation ~) and the maps making up the pullback cone are given by ^W tracked

by the term TTO ,
and the map V>' : fP>* (^ ' a.7).#o(*)/*)l

~* /P* : a.0] tracked

by the term (ffo
o 7To,7Ti).

As for pullbacks along s-morphism, consider again the F-morphism <t>
and an s-morphism

V : /M -*
f[<*] tracked by the term u; the same considerations as in the para-

graph above tell us that the pullback of t along U is given by the morphism U*(<j>) :

/[Ey : 7./J(ti(y)/*)]. The maps making up the pullback cone are, as in the previous

case, U*(4>) tracked by the term TTO and the map U 1
: /[Ey : l-0(u(y)/x)] -> /[Ex : a.(3]

tracked by the term (u o 7ro,7Ti).

As we have seen in the last section, closure of the class of F-morphisms under pullbacks

allows us to think of any morphism < : X -+ Y as giving rise to a pullback functor (f>* :

j-(y) _, F(X) where F(X) denotes the full subcategory of the slice category 3/X consisting

of F-morphisms. The action of this functor on objects is as stated in Proposition 3.2.10; its

action on morphisms is quite easy to see: it is exactly as we would expect for the corresponding

set-theoretic case, and we express it as follows.

Definition 3.2.11 For an object /(), find any morphism F : /[Ex : a. ft]
* /[Ex : 0.7],

tracked by a term f, and an arbitrary morphism U :

f[f>]
*

f[ct], tracked by the term u, the

action of U* on F is the morphism

z : 6.^(u(z)/x)] : [(/,& ~ [(*,(*, o f)(ud,b))]

tracked by the term (?TO(TI o /) o (w o 7r ,7ri)), using standard combinator notation.

The significant point is that for U in the class of F-morphisms, this functor has a right adjoint.

Proposition 3.2.12 For a F-morphism if>
: f[Ex : a.f3]

-
f[a], the pullback functor ^ has

a right adjoint 11^,.

Proof: The proof goes pretty much as for a sub-category in Sets. Assume that is tracked

by the term s. Consider a F-morphism <t> : /[y : (Ex : a./?).7 ]
-* /[Ex : a./?]; we claim

that, thr right adjoint }\+ has tlio following action on 0.

)
= ^o : [Sa- : a.llt/' : ^.7 ({x f

To vc-rify this, consider a F morphisn, /; : [ r : a . A
]
_ ft^ a||| , a |na|>

U :

^[Ey
: (Ex :

a.ft).x(s(y)/6)] -* [Ey : (Ex : a.^).7 ]
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tracked by the term u; the domain of U is, of course, the domain of ij>*(D). We shall

claim that there exists an unique map

U* :

fax
: a.6]

-
^[Ex

: a.Uy' : ft^((x,jf)ly)\

such that

U =
coij>*(U*) (3.10)

where e is a certain map specified later on:

y : (Ex : a./3).(IIy' :

/3.7((x,j/')/j/))(s(y)/x)] -* /[Ey : (Ex :

The domain of f is the domain of the pullback of ll^(^) along t/>. We note that a typical

element of /[Ex : a.Ily' : fl.l((x,y')/y)) is [(a,/)] where

[a]
/[a]

[/] flW:^((x^)/y))(a/x)]-t^t\B,

[/]
filly

1

:0(a/x).i((x iy')/y)(a/x)] (3.11)

=
[\3]\V>]

/[/3(a/x)]
=> Ml

fb((a,b)/y)]}
on simplifying (3.12)

Now consider a typical element [(a,rf)] /[Ex : a.0]; let a typical element of /[/?(a/x)],

for some [a] /[<*] be denoted as
[fr];

we have a map

y : (Ex : a.(3).x(s(y)/6)]

tracked by a term An.((,w),rf) which has the following action:
[fr]

-^ [((a,6),d)] for

gcncial [a], [6]
and

[rf]
under tlio jissinnptions already stated. Now consider a map

obtained as ^ o (U o J) : f[/?(a/x)]
-

fll((*,b)/y)] tracked by a term

g
=

ATn.jri(tt((An.((a,n),rf))m)) (3.13)

this has the property that
[6] fWa/x)] =>> [p6] fll((a,b)/y)], and hence from

Equation 3.12 we may say that [0] /[Hy' : Mx).i((x,if)ly)(alx)}. Hence we have

a map

: [{
fl ,rf)J

H* [Am.7r,(u((An.((a,n),d))m)))
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tracked by a term whose form is easy to make out (we shall not labour It). Moreover,

from the way that ihit map b IM*. drf,,d from K,- ho that it is unique for

a given V. Now we verify the commutation claimed in Equation 3.10. First note that

< is the evaluation map tracked by the term (o,.p<i,i ))
n8 the notatlon for

pairing and projection combinators, and where ap(-,-) is the application combinator:

hence < : [((,6),j)]
- [((<,*>,(>].

Now consider a typical element [((o,fc),d

/[Sir : (
: a./3).x(,(y)/)]: the action of ?(V) on this is (from Definition 3.2.11)

<(o,6), 9 ) (whcrej is as defined in Equation 3.13). The action of c on this is [((a,t>, S6;

as we have seen above ,6 = ,(u( , *),*))) and hence the action of the composite may

be written as

and we can sec immediately that

and hence the proposition.

The final point that we have to verify is whether the right adjoint operation detailed above

satisfies the Beck-Chevalley condition. An account of this condition has already been given

in the last section; in the present context, our task gains simplicity since the corresponding

objects are presented on the basis of a syntax.

Proposition 3.2.13 Given a pullback square m $ shown m Figure 3-2, the canonical natural

transformation U* oils1 > II E ^" ls an isomorphism.

Proof: We have the situation shown in Figure 3-2 (where the pullback square is marked

with a right-angle at its top left corner) in which we have omitted the /[] decoration

on the Ao-tenns: this is to be taken as implicit. In the proof below, in order to keep

the notation simple, we adopt the convention of underlining Ao-terms to indicate the

/[] operation: that is, JJL = f[X] for all X AQ. We assume that V is tracked by the

term ti. Referring to the figure, the action of Il^ on P has the domain

allowing a clash between in substituted variables, since the meaning is obvious. The

action of U* on this has the domain

(3.14)
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Figure 3-2: The Beck-Chevalley Condition.

upon simplifying the substitutions. On the other hand, the action ofV on P has the

domain

(3.15)

The action of UE on this object can be seen to be

Zx : <ft.Ha ; R(u(x}/y).S(((u
o iTo)(a) t iri(a))/z)((s,fl)/<0

upon simplifying the substitutions. Comparing Equation 3.14 and Equation 3.15, the

proposition follows easily.

Hence the Beck-Cheval.ey condition is satisfied, and that completes the circuit of verifications:

we have the final theorem.

Theorem 3.2.14 The category S i* relatively cartesian closed.

Proof: Immediate from Theorem 3.1.5 and Propositions 3.2.8-3.2.13.

This vaUdates our dairn that we may induce a theory of dependent Types on the basis

of a ...UNO uo., of a proof,,!*,, for A-torm, H U this conception of a proof-ob.ec

that we sha,, retain in the ,,,,. We s,,o,d note that in maKing tins cho.ce, we comm.t

ourselves to the view that scm<< ^'iJ terms (in other
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have identical Types (and hence, we compute Types for terms modulo this equivalence) a

position that may !>< thought to !>< rathrr too strong, rsprrially in view of our remarks in

the introduction that intensional isomorphism is all that would have been apposite in this

regard. In any case the resulting theory is adequate for supporting the general program of

semantics that we have proposed, and that is what concerns us in primarily in this work.



Chapter 4

Fibrations and Comprehension

Categories

We have seen, in the previous chapter, that we can induce, on the basis of the sets of residues

of A-terms (or their equivalence classes), a theory (category) of dependent Types. In this

chapter, we shall recast this construction within a framework that is more general, and

facilitates the further development of our argument towards the construction of a full (im-

predicative) constructive Type theory; as well as embed it, in an appropriate way, within a

certain standard model of polymorphic calculi. The framework which makes this chain of

constructions both elegant and abstract is the Theory of Fibered Categories; a theory that

originated in a fairly distant field, but found recognition in the late eighties in formal seman-

tics as an abstract and generaland perhaps the correct abstract framework, for studying

the semantics of constructive impredicative Type theories (cf. [39]). The form in which we

shall be using the main insights of the fibrations framework, is a particularly elegant con-

struction of Bart Jacobs, which he called Comprehension Categories: the idea originates in

considerations on the structure of the judgements of generalized type systems (cf. [6]) and is

particularly well-adapted to the study of their semantics. Moreover, it can be looked upon as

an easy generalization of the relatively cartesian closed structure that we have been looking

at in previous chapter. In the first section, we shall present the basic features of the theory

of fibered categories, while in the second we shall look at the structure of comprehension

categories.
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4.1 Fibered Categories

Fibered Categories provide an abstract notion of a "category varying over another;" and

thus an interpretation of Types dependent on (other) Types. Moreover, as we shall see, it

allows a precise formulation of the conditions required for modeling both dependency and

polymorphism. Thus, the notion is foundations! for various paradigms for the (categorical)

interpretations of Constructive Type theories. The classical reference for the basic theory

(for the English roadcr) is [9j; other excellent expositions, especially in the context of models

for constructive Type theory, include [40, 61, 57].

Definition 4.1.1 Let p : E - B be a functor between arbitrary categories E and B. A

morphism g : X' * X in E is said to be cartesian over a morphism u p(g) in B if, given

any morphism f : Y > X
,
a factorization p(f) uoi; in B uniquely determines a morphism

h : Y -* X' in E such that p(h) = v, and a factorization f = g o h.

Definition 4.1.2 In the context of definition 4.1.1 above, the functor p : E -* B is called

a fibralion if for every X E, and arrow u : 1 -> p(X) in B, there exists a cartesian

morphism g : X* -> X in E, such that p(g) = u. We say that X* is a re-indexing ofX along

A few terminological points need to be stated; they would facilitate the discussion in the

sequel. In the context of Definitions 4.1.1 and 4.1.2, an arrow / in E such that p(f)
- u for

an arrow u in B, is called an arrow above u. An arrow in E above an identity in B is called

vertical. For any / B, the collection of objects X of E such that p(X) = /, along with

vertical arrows in E above id/, is called the fiber over /, and denoted by E/. We note that

this is a sub-category of E, and it is useful to think of it as the category of /-indexed families.

The cartesian morphism g corresponding to u in Definition 4.1.2 is called the cartesian lifting

of u at X.

Definition 4.1.3 If p : E -> B is a fibration, a cleavage for p is a Articular choice, for any
u B'n and X E (such that p(X) =

cod(tt);, of a cartesian lifting of u at X. A fibration

equipped with a particular cleavage is called a cloven fibratian. Such a choice of a cartesian

lifting for u at X may br denoted as ,,(.Y) : (*) - A'. A collection of such choices for
every appropriate v and X -that is, the cleavage-induces for every u : A -* B a functor
w* : E fi

-* E^, called the re-indexing, or substitution functor.

Example 4.1.4 A simple and welUnown example of a fiction is based on arnw categories
lor an arbitrary category B, the arrow category B- con*** of morphisms of B a, objects,
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and commuting squares in B as moiyhisms. The functor dom : B~" -* B is on example of

a Jibmlion. This can lx easily mm. Consider an object g : A - X in B"*; and an airow

f : Y -> A = dom(g). It can be verified that the cartesian lifting of f at g, is the commuting

square, whose upper boundary is Y L A X and lower boundary is Y 9^l X ^ X. A
more interesting ease occurs when the category B has pullbacks: in this case the codomain

functor cod : B^ -* B is a fibration. Consider an object g : A -+ X in B^; and an arrow

f : Y -> X - cod(0). It can be verified that the cartesian lifting of f at g, is the pullback

square of y along f.

Example 4.1.5 Another easy trample of a fibration can be defined as follows. For an ar-

bitrary category C, we dejine the category l'am(C) (over Sets; 05 having the following con-

stituents.

Objects: Objects are families { A,}, / where 1 Sets and Xt C

Morphisms: A morphism f : {A" t ), 6 /
->

{Vj} j j consist of a function < : 7 -+ J in Sets,

along with a family of morphisms (/, : A', -+
V^,)} in C.

The functor p : Fam(C) * Sets is the obvious one: p : {.Y,}, /
- /. We can verify that it

is a fibmtwn. For any map u : J - / in Sets, the cartesian lifting of u at X =
{-Y,} l / w

the map fi(.X') : (X u^}j^j
>

{A,}, /, consisting of u, and the J -indexed family of identity

maps {nj :Xj -* A'
u(j) }.

We may generalize this example trivially to the rase of families indexed by some sub-

category S of Sets: toe designate this as Fain5(C). In fact the full generalization of this

example in which we would replace Sets by an arbitmry category B, leads to the theory of

fibmtions itself.

(!al,r^oii< ;il Type (licoiy is all alMi(. stnx tmr in UK* filirrH, which is preserved along

tin* re-indexing functors ;m<l reflected into the base through certain devices. One usually

puts enough structure in the fibers to interpret the type-theoretic operations for instance,

sums and products, and their usual relationships. Hence, an important aspect of most of

this fiborwise "structuration", is cartesian closure. Towards that end, the most elementary

notion is that of the fibercd terminal object. Intuitively, a fibration could be said to have a

fibered terminal object if every fiber has an (ordinary) terminal object, which is preserved

by the re indexing functors. In order to present this idea formally, we shall adopt a general

fiamrwoik within which other notions like fibeiecl products and exponents could be naturally

expressed.
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Definition 4.1.6 M p : E - B .nrf , : D - B fc /mrton. - "* *a *"* * *

Motor 71 : E -, D crffcrf cartesian ,/ , o // = ,W / * Artesian impfe. ttal If/

Hence, we may define a category F/b(B) having as objects, fibrations over B, and as mor-

phisms, cartesian functors as defined above. It can be verified that F/b(B) has a terminal

object-namely the Identity fibration Id. : B r B. In fact, it is not surprising that Fib(B)

is a 2-category: given G, H : p - in FJ6(B), a 2-cell is a natural transformation <,:G^H

having vertical components (qad = id
pj).

A well-known construction in Fib(B) is the 2-pullback (in Cat) of a fibration p : E - B

along an arbitrary functor K : A -> B. It is well-known that this yields a fibration again,

and we state this formally.

Lemma 4.1.7 Ut p : E - B be a Jibmtwn and K : A -> B an arMrarj/ /iincor; </cn in

the diagram below, !<*(]>) w Jibmtwn

A n E A'' _

Proof: A inorpliisin in A (<) E consists of a pair (/,?/) wil.li / a morpliism in A and n a

morpliifiiii in E, over A(/). It can l>c easily soon that any such / has a cartesian lifting

at any (cocl(/), E), where E E
A(fW(/))

: namely (f,K(f)(E)). We also note:

(A fx)D , A'), (/I', A
1

'))
=

where EAu(,') denotes the class of morphisms E -* E' over the B-morphism Ku.

This construction, whereby a new fibration is derived by pulling back along an arbitrary

functor, is known as a change of /WJM. In fact, in very much the same way as in the case

of "ordinary" category theory, products are obtained by pulling back terminal arrows along

terminal arrows, we may derive fibered products in F;/;(B) by pulling back.
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Lemma 4.1.8 The category Fib(B) admits finite products which are preserved under change

of base.

Proof: Given fibrations p : E -* B and g : D -> B, their product p x 9 can be seen to be

P o p*(9 ) : E D -> B. Preservation under rhange of base follows quite easily. The

terminal object is the identity fibration as above

The 2-categorical structure of Fi6(B) allows us to define the notion of a (fibered) adjunc-

tion.

Definition 4.1.9 Let p : E -> B and q : D -* B be fibrations over the same basis B, and

F : p -+ q and G : q -> p be cartesian functors. F is called the fibered left adjoint of G if F
is an ordinary left adjoint of G, with a vertical unit

rj (or equivalently, a vertical co-unit e).

This definition actually yields us a family of local adjunctions FA H GA for each A 6 B,

between the fibers EA and D^, by restriction. An excellent account of these notions can be

found in ([41, 40]).

We can now define the notion of fibered terminal objects formally.

Definition 4.1.10 ([41, Definition 3.5]) A fibratton p : E - B admits a terminal object if

the unique morphism from p to the terminal object in Fib(B) has a fibered right adjoint (which

we shall denote as I).

Spelling it out, this entails that the functor 1 yields, for each A B, a terminal object 1/1

in the fiber above A, and the for any map u : A -+ /?, the canonical map u*(lB) 1A is an

isomorphism. Moreover po 1 = id#.

We turn next to the idea of fibered cartesian closure. Intuitively, we speak of a fibration

being a fibered cartesian closed category when each of the fibers is cartesian closed, and

the re-indexing functors preserve this structure (up to isomorphism of course). Recall from

Lemmas 4.1.7 and 4.1.8, that given a fibration p : E -* B, we may form in Fib(B) the self-

product pxp :EE > B. There is the obvious fiber-wise diagonal morphism A : p - p x p

in Fib(B). The definition of fiber-wise cartesian products is now quite simple: recall that

cartesian products in the basic theory is defined as right adjoints of diagonal functors in Cat.

Definition 4.1.11 ([41, Definition 3.6]) A fibration p : E -* B admits cartesian products if

the morphism A : p -> p x p in Fib(B) has a fibered right adjoint.

This data ;imounLs to l.hr following: for ovory A B, tlirro is a cartesian product in tho

fiber category E^ and this product is preserved by the re-indexing functor u* corresponding

to any M : 7? A in B.
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Tho condition for fiborwiso ,-x ,-,,non tial is somowhat nK.ro rompliratod. Tho alandard

definition through a parametrized right adjoint has to be transplanted in the fibrat.onal

setting with some care. We furnish the following characterization, and an alternate account

may be found in [41].

Definition 4.1.12 Given the cartesian functor F : EE - E in Fib(B), that is the fibered

right adjoint to the functor A, as in Definition j.l.ll, we say that the fibration p has fibered

exponents, if there is a cartesian functor G : p X p -> p in F/b(B), such that the mediating

morphism (G,7r) : p x p - P x p (in the context of the pullback diagram in Figure 4'1)

fibered right adjoint to the corresjvnding mediating morphism (for F) (F,ir) : p X p -* p X p

in F/KB), and such that all (relevant) triangles in the right hand figure commute.

(F,7r)

\

Figure 4-1: Fibered Exponents.

It may be verified that this data amounts to the following: for every A G B, there is an

exponent in the fiber category E/\ and this exponent, (and the usual cartesian identities) are

preserved by the ro-indexing functor w* corresponding to any u : B > A in B. The above

set of definitions gives us the notion of a, fibered cartesian closed category: that is, a fibration

having a terminal, cartesian products and exponents in every fiber, and such that all the

KtriK'tuie is pieKoived by tin- ir indexing fnmloiN.

While the notion of a fibered cartesian closed category is significant from the point of

view of interpreting some of the operations involved in theory of dependent types, a full
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interpretation involves at least two more essential features: one is the possibility of forming

generally, for any object 7 B (the base), 7-indexed products and co-products; the second

is the possibility of being able to reflect (or recover) the structure of the fibers in the base.

As is well-known, this in itself is a form of the question of representability specifically of

the fiberwise global sections functor (cf. [40, Chapter 4 5], [61, Chapter 2 4]), and more

generally of fiberwise horn-sets. With this in mind we have the following general definition.

Definition 4.1.13 ([61, Definition 2.4.9]) Let p : E -> B be a cloven fibration (see Figure 4-

2). We say that p is locally small if for each 7 B, and X, Y E/, there is an object

[X,Y] 6 B, an arrow; TT : [X,Y] -> 7 in B, and an arrow ir$ : x*(X) -> 7r*(K) in
E[x,xj,

such that the following holds:

for any a : J - 7 in B, and an arrow f : a*(X) -* a*(X) in Ej there is an

unique arrow f : J ->
[A', Y] in B, such that f = /*(JT* ).

__ /*

Figure 4-2:

An equivalent formulation is to be found in [40]; we state it here for reference.
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Definition 4.1.14 ([40, Lemma. 4.5.2]) Let p : E -* B be a cloven fibration; p is locally

small if and only if for each / B and X, Y E/, the functor (B//)
" - Ens given by

J 2. J Ej(a*(X),ct*(Y))

(where Ens is a "suitably large" universe) is representable.

Locally small fibered cartesian closed categories have all the structure required to interpret

a theory of dependent Types. The precise details of the interpretation may be consulted in

[61].

Our final point in this section has to do with the notion of a generic object for a fibration,

essential for the interpretation of a free Type variable in impredicative systems (which we

shall take up in the sequel). This idea of a "small set of objects" relative to the base is

raptured in the notion of "the family of all objects" of the fibration, in the sense that any

object of any fiber may be "obtained" by re-indexing the generic object along an appropriate

morphism. Generic objects along with fibered products give us models of the polymorphic

A-Calculus, and hence is of interest to semanticists (cf. [61, Sections 2.3 and 2.4]).

Definition 4.1.15 Consider a fibration p : E * B; an object A in the fiber over pA = H

is known as a generic object (for p) if for any object E E E, we are given (the choice of) a

cartesian map E : E > A.

This definition implies that any object /,' in the fiber over pE =
/, can be regarded as the

re-indexing of the generic object A along a specified map : / -* J2 - Thus, the generic

object may be considered as the family of all objects in the category E. In a great many

respects this condition is an analogue of that of local smallness: in the latter, we had the

notion of the (representations) of the family of all morphisms between any two objects in

the total category. We shall see, in the next chapter, that this correspondence is not merely

figurative: locally small filiations are formally pretty close to fibrations with a generic object.

In the next section, we shall present a structure that consummates the features of a locally

small fibered cartesian closed category salient to an interpretation of a theory of dependent

Types; and in a more perspicuous manner being defined in close correspondence with the

structure of the judgements of the theory.

4.2 Comprehension Categories

The notion of a Comprehension CateRoiy was int.oduced
([-!()]), u, capture, essentially, the

structure of judgements in a Constructive Type Theory. The significant aspects to be inter-

preted are "context comprehension," expressed in the assumption rule ((A Type [F])
->
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[x : A > T]), and dependency (expressed in the projection [x : A > T] ->
[F]). The structure

is abstracted in the following definition.

Definition 4.2.1 ([40, Definition 4.1.1]) A comprehension category is a functor of the form

P : E B~* satisfying the conditions:

1. cod o P : E * B is a fibration

2. f is cartesian in E => P(f) is a pullback in B.

where cod refers to the co-domain functor cod : B~* B : (/ : X Y) *-* Y. P is called a

full comprehension category in case P is a full and faithful functor. It is said to be cloven in

case the corresponding fibration is cloven.

Following Jacobs, for a comprehension category P : E - B~*, we would denote the compo-

sition (cod o P) as p; and the composition (dom o P) by PQ. The components PE are known

as projections, and re-indexing functors of the form PE* are known as weakening functors.

For an object E 6 E we write |/v|
= {u : pE -> P E \PEou =

\<\], and call this set- the set

of sections of E. We would call E the total category.

It is now quite easy to see that the apparatus of display maps in the constitution of a

relatively cartesian closed category generalizes to the notion of projections in a comprehension

category. (Jivon the category B"*, wo denote by B~^(.F), the full sub-category of B~" with

display maps as objects. Then the inclusion B^(J") <-+ B~" gives us a full comprehension

category. While this is an elementary result, we spell out the proof (in tutorial detail!) as an

example of the intricacies involved in reasoning in the context of fibrations.

Proposition 4.2.2 Given the category B, along with a subcatcgory (ofB~*) of display maps

B^(F), the inclusion B^(f) -* B"* gives us a full comprehension category.

Proof: Wo shall tiso the following conventions: tho category B-*(7") shall be denoted as E;

(
ro<lo c_) M ,, ; (dome ->) as P and ^ as P. It is easy to sec that p is a f.bration: for

any object A : PQA - pA in E, and any arrow u : b -> a == pA, the cartesian lifting

of u at A is the pullback square of PA along ?/; the closure property of display maps

guarantees that tho domain of the lifting is in the appropriate fiber.

For tho soooml condition, wo shall rotor to Figiiro 4-3. Let us suppose that we have a

cartosia,,, .no. ,)l.is,,, / : // -* A in E, above- u : a - b (wo donoto pA by a and pll by

ft).
Wo ha.vo l.ho pnllbark of PA along M as shown; Sinro wo havo a full sub-catogory,

this is tho imago under P of a morphism TT : A b - A in E. The square Pf (which is

tho embedding square in the lower frame) is commuting; hence we have the mediating
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Figure 4-3: Display map categories.
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morphism from P^Tl to TV)/U; this is tho imago, under Pn of a morphism ft
: B > /I

in E, and such that / = TT o
/i. Now due to the cartesian-ness of ?r, we have an unique

morphism // : /l(,
> /?, such that ?r = /o//. Now, the universal property of the pull back

qualifies IT too as a cartesian lifting of u at A. Since both TT and / are cartesian liftings

of u, we may assert that they are isomorphic, and hence the proposition. The reader

may see this more explicitly in the situation depicted in the lower triangle in the top

frame(s). The cartesian- ness of / allows us an unique morphism such that this lower

triangle commutes; hence we must have that idg = v o /i. Reasoning by parity about

the other cartesian lifting TT, we derive that id^ b
=

ji
o i/. Hence A\> 3 B, which implies

that Pf is [isomorphic to] the pullback.

Finally the fullness of the comprehension category is obvious by virtue of the fullness

of the corresponding sub-category.

On the other hand, we can show that every comprehension category determines a category

of display maps: we shall return to this after a few technical lemmas have been established.

All of them are elementary and are to be found in Jacob's thesis ([40]); we restate the ones

(in the form) that we would need in the sequel, and lay out their proofs more explicitly.

Lemma 4.2.3 ([40, Lemma 4.1.7}) let P : E -> B- be a comprehension category. For

every E E and u : A -> pE in B, one has a pullback of PE along u of the form shown in

Figure 4-4.

P u*(E) P u(E)

rr

Pu*(E)
PE

A u PE

Figure 4-4: General form of Fullbacks for Comprehension Categories.

Proof: Since p EE cod o P is a fibration, we must have a cartesian lifting of u at -that is,

a cartesian morphism *(E) : *'<) - E in E above u. But then by definition, Pu(E)

must be a pullback in B, and hence the proposition.
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Lemma 4.2.4 (/-/, f^n.iii;i 4.1*]) M P = E - D- 6r rom;m /u-n.s,Ym nr,/r0rW l/.rr., /r

every u : /i -> p :n B, u;e ton* iAai |*()| S B/pE(u,PE).

Proof: By definition

= id}

since p(u*()) = A. Now, by Lemma 4.2.3 any such v yields u; = P u(E)ov : A -> P E.

Also, PEow = PE P u(E) ov = uo Pu*(E) o v since T>? o P u(E) = uo Pu*(E);

but then Pu m

(E) o u = id^ by definition. Hence we may write:

w = u}

S B/pE(u,PE)

by definition of morphrsms in the slices.

Corollary 4.2.5 B(A,P ^) S W tt^-pE l

u*(^)l

Proof: We can see that B(A,P E) = yu A^pE B/pE(u,PE). Hence, using this lemma, the

proposition.

We can see now that any comprehension category renders us a display map category.

Proposition 4.2.6 Any Comprehension category P : E > B~* yields us a class of maps

{PK\ E E) m B that is one of display maps.

Proof: The class (PE\E E} can be thought of as a class of display maps, since the pullback

of any of them along an arbitrary morphism remains in the class (Lemma 4.2.3).

Hence comprehension categories have the basic structure needed to model the constructions

within display map categories.

We can develop all the notions of fiberwise structure we have mentioned earlier. Consider

the notion of a fibcred terminal object: we follow Jacobs in formulating this concept in terms

of Erhard's D-catcgones ([18]).

Definition 4.2.7 ([40, Definition 4.1 5]) A comprehension category with unit is given by a

Jibmtion p : E - B, prtnndrd with a terminal object functor 1 : B - E which has a right

adjoint P : E -> B.

We may spell out precisely how this gives rise to a comprehension category.
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E B

1P F

PoE

PolR

Figure 4-5:

Proposition 4.2.8 In the context of Definition 4.2.7, we have a comprehension category

P : E -> B~* given by P : E *-* P(EE) where e is the co-unit of the adjunction.

Proof: We have the situation depicted in Figure 4-5. We assume that we are given a cartesian

map / : E -> F in E, and hence the problem is to show that the top square in Figure 4-5

is a pullback. Wo note first, that it commutes. This is easy to soe; using the property

of the terminal object functor that p o 1 = idB ,
it is nothing but the image under p

of the morphism lPo(f) -+ / in E^, which commutes by the property of adjunctions.

Now we have to establish its universality; consider an object R, given with morphisms

a : R -+ p E, and 6 : R -> pF in B, and such that PE o a = p/ o b. Transposing a

across the adjunction w<> have a : 1 It -+ E in E, and a commuting triangle a = K o la.

Taking the imago of this under p we have

p(a) =
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= PEoa

= pfob

by hypothesis. Hence, since p(a] factorizes through p/, we have, as a consequence of

the cartesian-ness of /, an unique map <? : IR - F such that p<f = b and a = / o y>.

Transposing <p across the adjunction, we have the morphism : R -> Po-F. We claim

that
<j>

is the mediating morphism. To- see this note that <f>
= F o 1 through the

adjunction. Hence,

But p((p) = 6; hence we have that 6 = PFofi. On the other hand, we have a = Po(a)onR
-

but a = / o
99; hence P (a)

= P / o PoV- Thus we have that a = P f o P > W but

then PoV3 *ln = ^; hence we have that a = P f o
(p. Hence the proposition.

The next result illustrates interesting properties of the fibered terminal object, for a

comprehension category with unit: notably that fibered global sections correspond to what

we have called "sections" in the base; and that morphisms in the slices are preserved in the

fibers via the domains of cartesian functors.

Proposition 4.2.9 ([40, Lemma 4.1.10]) Let P : E -> B~* be a comprehension category with

unit, via 1 : B -+ E. Then

L forEEA , \E\*EA (1A,E);

2. for EtEA , andu:A-+ p, 3/pE(u,PE) 2 Ex(lA,u*())

Proof: Let us consider the first proposition. We have, for every s EA(1A,E), that its

transpose J across the adjunction satisfies s = EE IS- Hence

since p o 1 = \ ( \ H
-

b,,t then p(*) =
id,,; hence we have that p(eE ) os = id^, which

implies that * e \E\. Conversely, starting out with any r \K\, we shall have an unique
f : I A -> E in E^-its transpose. Hence, for E EX, \E\ S E^(l>l,f;). As for

the second proposition, by Lemma 4.2.4, for every u : A - pE in B, we have that

|n*()| S? B/pE(u,PE)\ but by the previous result, |*(J5)| ^
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Fiberwise cartesian closure may be refined, in the context of Comprehension categories,

into explicit structural conditions for "sums" and "products;" the interpretation of these

type-theoretic operations are defined through a translation of the corresponding notions in

the context of hyperdoctrines ([76]), triposes ([37]), or PL-categories ([78]): that is sum and

product types are defined through left and right adjunctions to relevant substitution functors

and take the following form.

Definition 4.2.10 ([40, Definition 4.2.1]) Let P : E -> B~* be a comprehension category; we

say that P has products (respectively sums; if for any E the weakening functor PE* has

a right adjoint HE (respectively, a left adjoint ZE), satisfying the Beck-Chevalley condition

stated below.

For every cartesian morphism f : E -+ E' in E, the (canonical) natural transformation

(pf)^E' -* nE(Po/)* (respectively E (7>o/)* ~* (pIY^E')

is an isomorphism.

The structure adumbrated in Definition 4.2.10 is that needed to model what are known

as weak sums in Type theory (cf. [40, Chapter 2 2.4]). To interpret strong sums, we have a

stronger condition, which we detail below.

Definition 4.2.11 ([40, Definition 4.2.10]) Consider a comprehension category p : E B

having sums. In any comprehension category, we have for any ",
D 6 E such that pD PoE,

the map compx(D) = P~EOIJD : D > PE*(^^.D) > E/?.D. We say that P has strong sums

if the following condition obtains:

for every compE(D) as above, and for every D' in E, and u, v B forming a

commutative square (see Figure 4'6)> there is an unique w B satisfying PD' o

w - v and u = w o P (compE(D)).

It is known that the condition for strong sums is logically equivalent to the condition that the

morphism PQ(compE(D)) be an isomorphism; this is the form in which we shall demonstrate

this property in the sequel.

Finally we have the following unit that gives us all we need to interpret a theory of

dependent types (with strong sums).

Definition 4.2.12 A closed comprehension category is a full comprehension category with

unit, products and strong sums, and having a terminal object in the base.



62 CHAPTER 4. FIHRATIONS AND COMPREHENSION CATEGORIES

Po(compK(D}) r

PD'

Figure 4-6: Condition for strong sums.

This epitomizes all the properties of a locally small fibered cartesian closed category, as

remarked earlier. We state the following proposition for reference, and provide a suggestion

of the proof.

Theorem 4.2.13 ([40, Lemma 4.3.9]) For a Closed Comprehension Category P : E - B~",

the fibration p - cod o P is a fibered cartesian closed category.

Proof: As stated in the reference, strong sums are not needed for the proof. For objects

E and E' in the fiber EPE, the cartesian product E x E' is ZEPE*(E')' The second

projection TTE< : E x E' -> E 1

may be seen to be the co-unit of the adjunction

# H PE*. As for the first projection, we have the following construction: we have the

pullback square of PE along itself, yielding us the morphism PE*(E)\ we also have the

pullbatk of PE' along PE. yielding us tlio iiiuipliisin PE*(E'); this inoi pliism gives

us a cone over the appropriate diagram of the first pullback square. There is thus a

mediating morphism / : PE*(E'} > PE*(E) in the fiber Ep /;;, and we may transpose

it across the adjunction, obtaining a morphism /* : Y,^PE*(E') E. This is the first

projection TT/;;. As for the exponent, it is fairly straightforward though tedious to verify

that E => E' = \\EPE*(E').

We turn now to the close relationship between comprehension categories and display map

categories: we have remarked earlier that they really "amount to the same thing;" addi-

tionally, since closed comprehension categories can interpret a theory of dependent types

(with strong sums), we would anticipate that relative cartesian closure of display map cat-

egories required for interpreting the same class of theories, would correspond to the closure

of the corresponding comprehension category. We give a brief idea of a proof, which is quite

straightforward.
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Proposition 4.2.14 Given a display map category B, the corresponding Comprehension cat-

egory described in Lemma 4.2.2 has sums and products if and only ifB is relatively cartesian

closed. Conversely, for any comprehension category, the corresponding display map category

is relatively cartesian closed exactly when the former has sums and products.

Proof: If B is relatively cartesian closed, then for any display map F, the pullback functor F*

has left and right adjoints (satisfying the Neck-Chevalley condition). Since the objects

of the total category of the comprehension category are exactly the display maps, the

condition is exactly equivalent to requiring that the comprehension category has sums

and products. The converse follows on the same consideration. Similarly for the second

part.

This tells us, in particular, that the category 3 of the previous chapter may be cast in the form

of a closed comprehension category. We shall see details of this construction in Chapter 6.

Finally, we shall demonstrate that comprehension categories (with unit) correspond pretty

exactly to the locally small fibered cartesian closed categories of the last section which is

in fact what we would expect, given our understanding of local smallness as that general

fibrational property that is a basis for the interpretation of a theory of dependent Types. We

have the following result.

Theorem 4.2.15 ([40, Proposition 4.5.5]) Let p : E -* B be a fibered cartesian closed cate-

gory. Then

p is locally small if and only if there is a comprehension category with unit, P :

E -* B~* such that p = cod o P.

Proof: Let 1 : E - B denote the fibered terminal object.

=> From Definition 4.2.7, we have to prove the existence of a functor PQ : E > B right

adjoint to 1. Consider E E^ for some A G B. Let us put PE = ?r : [1A, E] -> A\

now for any B B we have the following sequence of isomorphisms:

;) Wu.->i Ejj(ltf, *()) by property of cartesian maps

= Wu-B-^ EBK(M)X()) since IB * u'(M)

- Wu H-+A B/A(u,PE) by definition of P, and local smallness

S B(7y,r A') putting Po = dom o P

The naturality of this isomorphism in E and B is straightforward. Hence we see

that the functor PQ as defined is a right adjoint to 1.
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<= We have to demonstrate the existence of a representing arrow if : [,'] - A in B

for any E, E' EA\ consider any u : 5 - A in B. We have

flberwise exP nents

fibered exponents

= B/A(u,P(E=*E')) from Proposition 4.2.9

Hence wo may take P(K =
fl')

as The appropriate representing arrow.

The final remark we have is regarding the generalization of the notion of products and

sums to filiations relative to comprehension categories. We have the following definition.

Definition 4.2.16 ([40, Definition 4.2.1]) Let q : D - B be a fibration and P : E -> B~"

be a comprehension category. We say that q has P-products (respectively P-sums) if for any

E 6 E the weakening functor PE* : Dps -> DTOB has a right adjoint HE (respectively, a left

adjoint EE)> satisfying the Beck-Chevalley condition stated in Definition 4-2.10.

The fibration D may arise from a comprehension category D : E -
B"*, in which case we

say that V has P-products (or P-sums).

This completes our exposition of the basic structures involved in the interpretation of

theories of dependent Types. In the next chapter we continue the exposition towards the

thonic of imprcdirativc theories.



Chapter 5

Full Internal Sub-Categories

A theory of dependent types is a generalization of the typed A-Calculus, in very much the

same way that (First-order) predicate logic is a generalization of the propositional logic;

their correspondence being along the Curry-Howard isomorphism. Semantically, this gener-

alization docs not add any level of complexity: as in the case of the semantics of the typed

A-Calculus, we may very well remain within (fibrations over) a (classical) universe of sets;

we need only a local form of completeness, which essentially amounts to having products

(and co-products) indexed by objects of the base category. A level of complexity however

may be added when we consider generalizations to various impredicative calculi: the most

straightforward generalization is of course to consider the polymorphic A-Calculus; this is, as

we know, the calculus of the proofs of second-order logic ([24, 27, 48, 78]). Universal quantifi-

cation over all propositions is impredicative, and local forms of completeness no longer suffice;

in other words, we may not remain any more within classical set theory ([65]). Historically,

this problem was solved by constructing global limits within a non-classical universe of sets

([62]): specifically, through the construction of a small complete category within an intuition-

istic universe ([34, 36]). Such an object is essentially an internal category within the ambient

topos (which is the categorical form of an intuitionistic universe) and closed under all (inter-

nal) limits (suitably defined). The interaction between the two forms of completeness or,

in other words, the requirement that both dependent and impredicative forms of quantifi-

cation be modeled within the same framework, adds a considerable degree of complexity

to the problem. The appropriate level at which one has to work, then, is one at which

the fibrational and the internal categorical framework may be seen a* intrinsically related,

and their structural effects be epitomized within a single general framework. Within such a

framework, the small complete category is more appositely structured as an object known

a* a full internal sub-category ([34])-
In fact, the original construction of a small complete
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category by Hyland, was facilitated by the requirement that the object constructed be a full

internal sub-category of the ambient topos. For such objects, the (internal) global sections

functor is full and faithful, and the (internal) limit structure is "determined" by that of the

ambient category. The framework within which the fibrational and internal categorical struc-

tures may be synthesized, is obtained as the generalization of the Hyland-Pitts model of the

Theory of Constructions (within a fibrational framework) and is titled CC-Category by B.

Jacobs ([40]). In this chapter, wo shall provide an account of this development, culminating

in the description of a CC-Category, and of a full internal sub-category the latter being the

form in which, in the subsequent chapters, we shall embed our system of Types within the

Readability Topos.

5.1 Internal Categories

In this section we provide a brief introduction to the notion of an internal category. The

matter will be mainly expository and for most of the advanced results and proofs, we shall

refer the reader to the references. In some sense, internal category theory complements the

theoretical function of h'bcrcd category theory. Doth allow us a formulation of a theory of

variable categories, and each has its particular elegance. Fibrations is probably a more general

framework, and offers a more intuitive notion of dependent objects. Moreover, the framework

permits a formulation of a class of related abstract objects sheaves and fiber bundles to name

two. On the other hand, internal categories offer an intuitive notion of categories relative

to iin "universe" for instance, l.opolo^ical groups, and "synthetic" objects as manifolds or

domains relative to a topos. As we shall see, this allows a fine-grained and elegant treatment

of matters like completeness. In the last chapter, we shall explore the synthetic approach

vis-a-vis domains an investigation that assumes considerable theoretical importance in view

of the fact that domains can now be thought of as sets and with full function spaces, in the

spirit of Pitt's shibboleth, "Polymorphism is set-theoretic, constructively." There is of course,

a correlation between the two frameworks, and we shall comment on that towards the end of

this section.

We shall work within a category B that is assumed to have pullbacks. The definition

of an internal category is a simple generalization of the idea of an algebraic object within a

category for instance, a monoid object or a ring object (c/. [49, Chapter 3 6]). The logical

axioms for a category belong to a certain class of logical theories, which may be modeled in

any category with finite limits. This class is named Lim theories by Hyland and Pitts ([38]),

and left-exact theories by Harr and Wells ([7]). The relevant structures needed to model the
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axioms of this theory are described below (cf. [4, Chapter 7], [42, Chapter 2]).

Definition 5.1.1 An internal category E (relative to an ambient category B) is a 6-tuple

(EQ, E\ ,
cJ , Oi , id, jj)

where the types of each component are as follows:

EQ,E} : B

do,0i : Et-^Eo

idE : E -> Ei

E : E2 -> El

where the object EI (and other objects involved in the commutation conditions in the sequel)

are as defined in the cluster of (four) pullback diagrams at the bottom of Figure 5-1, and the

diagrams shown in the rest of the figure commute.

The attentive reader would probably note that an isomorphism involved in the figure stating

the associativity for composition has been elided. The commuting diagrams are simply a

categorical form of the corresponding axioms for a category object, as may be easily verified.

Thus, an internal category is simply a category object in an (ambient) category that has

enough structure to satisfy tho the axioms in its definition. In the definition above, the

component EQ is the object of objects of the internal category E, while E\ is the object of

morphisms; do and d\ are the domain and co-domain morphisms respectively, while idjj and

E are the internal identity and internal composition respectively. A simple example of an

internal category is the discrete category \D\ obtained from any object D 6 B: its object of

objects and that of morphisms are both D, while the internal identity is simply the identity

id/), while the other components follow from these conditions immediately.

We may carry out many of the standard constructions in Category theory internally. The

definition of an internal functor is a case in point and we provide the definition below.

Definition 5.1.2 An internal functor F between internal categories E and E' consists of a

pair of morphisms F :
- E'Q and F\

'

E\ ~+ E\> and such that ihe following commutation

conditions arc satisfied.

Foodo = d o FI

FQ odi = d\ o FI



flb

Figuro5-l: Internal Categories.
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Thus, wo have the category of internal categories (of B), which wo denote as Cat(B). In

fact, as is well-known, we have a 2-Categorical structure on Cat(B) ([40, Chapter 1 4]).

Definition 5.1.3 A natural transformation a : F A G (where F,G : E -* E;
are internal

functors) is given as a morphism a : E -+ E{ which makes the diagrams in Figure 5-2

commute.

(F,,<roft)

Figure 5-2: Internal Natural Transformations.

The most significant benefit of being able to endow Cat(B) with a 2-catcgorical structure is

that we may define internal adjunctions on its basis. Actually there are two ways of going

about this: one may consider the (standard) definition of an adjunction as a triple consisting

of two functors, and a bijection between certain hom-scts in the two categories: however,

this requires the notion of an indexed collection of isomorphisms between objects that can

represent hom-sets. This can be done through the notion of an internal presheaf on the

objects in Cat(B); an excellent exposition of this method is in [4].
The other way is to use

an alternative definition of an adjunction: for which we refer the reader to [49, Chapter 4,

Theorem 2). The essential idea is that an adjunction can be defined in terms of two natural

transformations, and certain composite transformations that evaluate to the identity natural

transformation; we have the following definition.

Definition 5.1.4 Given internal categories C and D (in some ambient category), and in-

ternal functors F : C -> D and G : D -+ C, and natural transformations 77 : idc -* GF

and : idD -> FG (where idx denotes the identity functor on the internal category X), we

say that F is a left adjoint G, or G is a right adjoint to F, or that (F,G.n,e) constitutes an

adjunction between C and D if and only if the following commutations obtain.

G -^ GFG^ G = idG
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where id*, for a internal functor X denotes the identity natural transformation on X, and

the n levant composition of natural transformation* is thr vertical composition.

On this basis, we can proceed to define the significant notion of an internal cartesian closed

category. We provide a brief sketch of the process, referring the reader to [40, Chapter 1 4]

for the details.

Construction 5.1.5 An internal category E in Cat(B) is said to have an internal terminal

object, if the unique internal functor 1 E : E -+
|1| (where 1 is the terminal object ofB), has an

(internal) right adjoint. E is said to have internal cartesian products if the (internal) diagonal

functor A : E -* E x E has an (internal) right adjoint (
X ).

From the functor (
X

),
and the

inclusion functor i : \K \

* E we may construct the functor ( X ) : |J^o| xE -* |/?o|xE and

we say that E has internal exponents if (
X )

has an (internal) right adjoint.

In this thesis, we shall not be using too many of these concepts: we shall demonstrate a

somewhat more complicated limit structure on the internal category we would construct in

the next chapter, and an exposition of this structure within the current framework would be

rather cumbersome. On the other hand, if the internal category meets certain conditions

and thus admitting the structure of what is known as a full internal sub-category then the

limit structure of this category "agrees" with (in fact, is determined by) that of the ambient

category. Hence the corresponding properties are easier to state and prove, and we shall

adopt this method.

The notion which is essential for denning the conditions under which an internal category

qualifies as a full internal sub-category, is that of externalizatwn. It is also the notion that

illustrates the underlying correlation between the theory of internal categories, and that of

fibrations ([4, Chapter 7, 4,5], [40, Chapter 1 4]). We furnish the following definition.

Definition 5.1.6 lor an internal category M in Cat(B) we define the externalization o/M
as the category M having the following constituents.

Objects: Objects are (A,f : A -> Af
), for A B.

Morphisms: A morphism (AJ-.A-+ M )
->

(13, g : B -> M
) are pairs (u,/i) such that

u:A-+U and h : A -+ MI arc morphisms in B, and the following equations hold.

DO o h = / d] o h g o it

We may define a functor [M] : M -* B as illustrated in Proposition 5.1.7 below; the

interesting fact is that this is a fibration.
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Proposition 5.1.7 The functor [M] : M -* B defined so as to have the following action

(AJ :A-* MO)~ A (u, h) *-* u

is a fibmtion.

Proof: Obtains easily on the following consideration: for an object (AJ:A-+ M )inM,
and a morphism g : X -+ A =

[M]((/l,/)), the cartesian lifting of at (AJ) can be

seen to be the morphism (g,k) :(BJog)-+ (AJ) where k = idM o(/o0) : B -+ M\.

This correspondence actually has a deeper structure: it may be extended BO as to yield a

2-functor Cat(M) -* Fib(M). For details we refer the reader to [40, ibid]. A fibration would

be said to be small if it is equivalent to a fibration obtained from the externalization of some

internal category.

The complementarity between the two approaches towards a theory of variable categories

(that is, internal category theory and fibered category theory) is partially exemplified by

Proposition 5.1.7: every internal category yields a (split) fibration through its externalization.

Moreover, we may note that this fibration is essentially a B-indexed category. Assuming B

is locally small, the structure of the this indexed category is such as to be, essentially, an

internal category in the presheaf category SetsBop . There is, in fact, the converse aspect

to the complementarity: every (split) fibration yields an internal category in the presheaf

category. We state the result below for completeness.

Proposition 5.1.8 ([40, Proposition 1.4.8]) Let p : E -> B be a split fibration, such that

B is locally small, and all Jihmtwns air small: there exists an internal category p in the

prc-sheaf category B = Sets^
P

,
and a change-of-base condition shown in Figure 5-3, where

Y is the Yoneda embedding.

Proof: We sketch the outlines of the proof; the details may be checked up in the cited

reference. The object of objects of the internal category is po : B op > Sets : A ->

Obj(E /1 )
while the object of niorpliisms is p {

: B op -* Sets : A -* Mor(>i). The rest

of the internal category structure is fairly obvious. The functor // : E -> (p) is given

as II : E -> (Y(pE),E) where E is the natural transformation Y(pE) -> po given as

Ex : (u : x -- pE) -* u*(E) Er . The rest of the details are not difficult to fill in.

With this brief sketch of tlio theory of internal categories, we end this section. In the next

to sections wo shall look at two important aspects of this theory: the notions of completeness,

for internal catogorios (and filiations), and subsequently, the notion of a full internal sub-

category.
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[P]

Figure 5-3: Internalization.

5.2 Notions of Completeness

Much of the material in this section is far more general than what we would be requiring for

the subsequent development of the thesis; we include it mainly for the sake of completeness.

The translation of the standard notions of completeness from "naive" category theory to

internal category theory is deeper than what one might expect. Moreover, it is in this respect,

that internal category theory is found to offer a more fine-grained notion of completeness (than

fibered category theory): the notions may be translated in terms of fibrations, but, as we

would see, they would not be very intuitive. We start with notions of completeness for fibered

categories. The following definition is standard and is (I think) due to Benabou.

Definition 5.2.1 A fibration is said to be (strongly) complete if it has:

fibered products- i.e., for every morphism <f>
in the base, the re-indexing functor (j>* has

a right adjoint 11^ satisfying the Beck-Chevalley condition.

fiberwisc jimtc limits.

This is the notion that we shall usually mean when we describe a fibration as complete. How-

ever, when we formulate the notion of completeness for internal categories, and specifically in

the case of categories internal to a topos, we shall have two non-equivalent formulations one

being described as weak and the other as strong. Thus, in the spirit of the complementarity
between internal categories and fibcred categories, we would require a corresponding notion

of weak completeness for fibrations. This notion is not very intuitive and an appreciation
of the issues involved would require some idea of the semantics of intuitionistic logic (the
Kripke-Joyal semantics): we shall not elaborate this 1 but merely record the definition for the
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sake of "completeness."

Definition 5.2.2 ([61, Definition 3.8.39]) A fibration p : E -+ B is said to be weakly com-

plete if the following conditions hold.

Given any finite diagram D in any fiber E/, there is an epimorphism a:K-+IinB,
such that a*(D) has a limit in EK) and re-indexing functors preserve finite limits.

Given any map <j>
: J -* /, there is an epimorphism a : K -* / such that ifiJ>:JiK->

K is the obvious map in the pullback (diagram) of<f> along a, then V>* has a right adjoint

11^,, and all such right adjoints satisfy the Beck-Chevalley condition.

We come now to the problem of framing corresponding notions of completeness for internal

categories. The implicit assumption here is that we arc in the context of categories internal

to a topos. The situation is more nuanced here, and we have a range of possible formulations

that confront us. The standard guideline in this field has been to formulate the property

in such terms as to yield us models of the impredicative and dependent Type theories in

particular, the theory of Constructions. The basic idea that the internal category should

come equipped with the structure of a category with finite limits, is refined in two directions:

first, that we should consider not just single diagrams and their limiting cones, but a family

of diagrams (possibly) of varying shapes (cf. [61, pages 81-84], [66]); second, it is one thing

to frame this condition in the internal language and require its validity, and quite another

to require the actual existence of the structure that fulfills it (since the axiom of choice may

fail). Taking those into considerations, we have the following formulations 2
.

Definition 5.2.3 ([61, Definition 3.8.34]) We say that an internal category C Cat(B) is

weakly complete if for all objects / B
,
and for all internal categories D in the slice topos

B//, the following validity holds.

|= VF : [D,/*(C)J. "The category of cones over F has a terminal object"

where [D,/*(C)] denotes the category of internal functors from D to /*(C) both internal

categories in B/7, and the quoted statement is understood as an appropriate internal language

statement.

of validity that IN local. Now local validity (or local truth, to n*e C.rothendicck's usage) means "true on a

cover," or in other words, true with respect to a covering object (c/[28, Chapter 14]). When we translate this

in appropriate terms, we arrive at the formulation above. A fuller exposition of this may be found in [61].

3We antic ip.tfr the- exposition in Cluplrr 7, of the- internal loRi< of a lopon; the reader may like to refer to

this for the relevant basic notion*
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The definition for strong completeness on the other hand actually asserts the existence of a

limiting cone. It has the following form.

Definition 5.2.4 We say that an internal category C Cat(B) is strongly complete if for

all objects / B, and for all internal categories D in the slice topos B/I, the diagonal functor

A : 7-(C) - [D,T(C)J has a right adjoint.

This definition thus assorts that for any /-indexed family of diagrams (of possibly varying

sizes) in C, there exists a function that to each i 6 / assigns a limit cone in C over the

corresponding diagram.

Finally we have the result connecting the notions of completeness for fibrations and in-

ternal categories, which we record for reference (cf. [36]).

Theorem 5.2.5 ([36, Proposition 4.4]) An internal category C in a topos B is strongly (re-

spectively, weakly) complete, if and only if its externalization (C) is strongly (respectively,

weakly) complete.

As we have mentioned at the beginning of this section, the definitions above are of greater

generality than what we would be requiring for our purpose. The fibrational model for the

theory of Constructions needs, essentially, fibered products and sums (defined in the similar

fashion as products /.p. in terms of left adjoints to re-indexing functors). Moreover, the

basic theory is developed in an ambient category that is not a topos (but one that is, as we
shall see, a sub-category of a quasi-topos): hence the weak notions are not of much relevance
to us. Thus we would mainly be using the notion of strong completeness for fibered categories

(comprehension categories, to be precise, and with the requirement of fibered sums instead
of general fiberwise finite limits). The corresponding notion of completeness (let us name it

CC-wmplctcncss) in terms ofinfo.nnl calorics would ho framed in the next section, oner
we have the notion of a full internal sub-category.

5.3 Full Internal Sub-categories

The notion of an internal full sub-category (or full internal
sub-category) is an interestingand nch one: it allows a compact and elegant description of many of the phenomena we are

interested in-particu,arly the various limit structures required or available in either of the
frameworks we have studied (fibered or

internal). , fact
, because of itg^^^

.1 n>ay be seen to stand at the junction of the two modes of
description, and allows a passagebetw.n t] Jntc , modp Qf descr

.

)tion and the fjbered mo(je ^ particu^
g

amb,ent category, the limit structure of the internal category confirms to that of the ambient
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category, simplifyinR much of i.|,,. hunlm of proof and in fart of definition, as we shall see.

The essential idea behind this object is that it is an internal category, but one which is

(isomorphic to) some full sub-category of the ambient category. The notion originated from

the consideration, that for any morphism / in a topos. it should be possible to construct the

(internal) category corresponding to the full sub-category consisting of the fibers of /. We

present a systematic description below.

Construction 5.3.1 ([34, Section 0.1]) We present the basic structures that would be in-

voked in the definition of a functor known as the (internal) global sections functor U(M) :

(M) -> B~* (for an internal category C Cat(B)j defined below. We consider an object

f : A - Mo in the fiber of E(M) over A. The internal category M is assumed to have an

internal terminal object, defined accortling to the notion of strong completeness presented in

the last section. Consider the sequence of pullbacks shown in Figure 5-4 (top, left). The map

(_L,idM )
: MO > MO X MO is constituted by the constant map 1 : M -* M that maps every

object to the terminal object, and the identity map id^o on M . The pullbacks give us an

object f(p) that we shall take to be the image of the object f : A -> M under the action

of the functor. Consider now, the notion of a generic family of maps, s : PQ > P\ . The

objects PQ and P\ are obtained through the second and third pullbacks shown (top, right and

second row, left). Since the map (J_,idy\Y )
is a monic, so is the map k in the first pullback:

hence X is a sub-object of MI, which implies that PQ is a sub-object of MI the object of

composable morphisms (we ignore some trivial isomorphisms). Hence internal composition

M "tvstncts" to ]'u and we easily derive that p o M = d\ o q. Thus we have a mediating

morphism s : P - PI in the fourth diagram (second row, right), and this gives us the generic

family of maps. Now we consider a map (A,f:A-+ M )
-> (A,g : A > M

)
in the fiber of

the cxternalization over A which is essentially a morphism h \ A * M\. We can pullback

the generic family along h (as shown in the fifth figure, in the third ww), and thus obtain a

morphism h*(s). We also have that f - 8Q o h and g = d\ o h and hence the last figure allows

us to conclude that h*(PQ )
= R (where R is the domain of f*(p)) and /i*(P )

= S (where S

is the domain of g*(p)). Hence h*(s) can be construed as a map IJ(M)(/) "* LI(M )(0)> and

hence the image of the map (AJ:A-> M >
-* (A,g : A -> M

>
considered.

Definition 5.3.2 We describe the action of a functor known as the (internal) global sections

functor, LI(M) : (M) -+ B"" for an internal category C Cat(B), and where we assume

that B has all the structure needed to perform the construction. The action of JJ(M) is

described as follows.
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oA) <*

Mo x Mo
*

M

Ml 'MO

Figure 5-'1: The intornal global sections functor.
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On Objects: For nn ohjerl f : A - W ,- thr flllfr 0/E(C) owr /fcp^ ., e/>^
it to (he object f*(p) shown in the t'igun 5-4.

On Morphisms: For a morp/,,Sm (A,/ : X -. JW
>
-* (X,, :A^M ) in the fiber over A,

given as (!dx ,k) trim h:A~,M,,the action o/LJ(M) i, to map it to (he morptom
h*(s) indicated in the Figure 5-4.

The global sections functor thus intuitively corresponds to the notion of mapping an /
indexed collection of objects of an internal category onto an /-indexed collection of objects

representing the (internal) global sections of the former. On its basis we may define the

notion of a full internal sub-category. Recall that a full sub-category in the fibrational setting
consists essentially of a collection of display maps: notionally, the display maps represent
families of objects of some (naive) sub-category of the ambient category, indexed by objects
of the latter. In the case that the ambient category B is a topos (or at least locally cartesian

closed), wo may formulate this notion as a fibration E with a full and faithful cartesian functor

to the codomain fibration B~* -> B. In the general case we have the following definition.

Definition 5.3.3 An internal category M Cat(B) is said to be a full internal sub-category

if there is a full comprehension category of the form illustrated in Figure 5-5, which preserves

fibcrcd terminal objects if any.

[M] \ / rod

Figure 5-5: A full internal sub-category.

Thus, a full internal sub-category is one for which the (internal) global sections functor is a

full comprehension category (and of course, with the commutation expressed in the figure).

It may be interesting to contrast our definition with that given in [40, Definition 4.5.10).

The principal virtue of full internal sub-categories is that their limit structure agrees with

that of the ambient category in an appropriate sense. The sense in which this is so, can

be conveyed through Theorem 5. .'M below, which is part of the folklore of this subject. We
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shall not. prove- it, IICTP, and a fiillrr mronnt may bo found in [34, Srrtion 0.2]. Tho notion

of a full internal sub-category was developed initially in connection with a topos, and the

theorem is set in that context. As we have mentioned, in this setting, a full sub-category

(in the fibrational sense) is given a* fibration E with a full and faithful cartesian functor to

the codomain fibration B-* - B. In terms of indexed categories, this may be represented

as a full and faithful functor of indexed categories E(C] - B/C. We have the following

proposition.

Theorem 5.3.4 Let E be a full sub-category of a locally cartesian closed category B, with a

terminal object, and so that the functor (of indexed categories) E(C) -+ B/C (where E(C) =

EC) preserves the terminal object; then, ifE has finite limits, (i.e. fiberwise finite limits) and

indexed products (i.e. Jibend products), then these are preserved by the functor E(C) > B/C.

Since fibered limits and products are generally families of such indexed by the objects of B,

then when E is the externalization of an internal category, we may say that the limit structure

of the internal category agrees with that of the ambient category. In the general case, when

the ambient category is not locally cartesian closed, we may use the Theorem to formulate a

definitional what it may mean for an internal category to be, for instance, relatively cartesian

closed. Intuitively, it means, of course that the category is (internally) equipped with the

structure of a relatively cartesian closed category. We may state this precisely as follows.

Definition 5.3.5 A full internal sub-category is said to be a full internal relatively cartesian

closed sub-category if the comprehension category in its definition (Definition 5.3.3) (i.e. the

internal global sections functor) is a closed comprehension category.

This definition, intuitively amounts to requiring that the sub-category internally represented

by the internal category is relatively cartesian closed (actually, with strong sums). We shall

see the utility of this definition in the succeeding chapters. In the sequel, we would encounter

and be interested in full internal sub- categories that are internally relatively cartesian closed

with respect to some sub-category of the ambient category. The precise definition of this is

as follows.

Definition 5.3.6 A full internal sub-category M of a category E is said to be a full internal

relatively cartesian closed sub-category relative to a sub-category BofEif the functor LJ(M)o
TT shown in /'V/rm 5-fi is dosed comprehension category (which preserves flbcnd terminal

objects if any), and such that the following conditions hold.

1. M is an internal category in B (and thus, in E);
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EB(M) TT r*(M) \](M\

[M]B [M]E

79

cod

Figure 5-6: Relative closure.

2. The square indicated (where t is the inclusion functor) is a change-of-base situation.

The externalizations have been subscripted with the names of the respective categories. Note

that according to the assumptions of the definition, LI(M) is a full comprehension category,

preserving terminal objects if any
3

.

In the last part of this section we shall develop further the theme of the complementarity

between the fibered and internal ways of looking at variable categories. We shall see that if

a fibration has a "small set of objects" relative to the base, (in the sense of having a generic

object, as defined in the previous chapter) and furthermore, if it is locally small, then it is

equivalent to the externalization of an internal category in the base. We have the following

important theorem, a version of which is proved as [40, Theorem 4.5.7]; in our case, we

assume only a display map structure in the base, rather than requiring all pullbacks.

Theorem 5.3.7 Let p : E -> B be a locally small fibration; further, let B be a display

map category, with the class of display maps closed under composition, and such that the

representing arrows for the fiber-wise horn-sets are display maps; finally let the first projections

from cartesian products also be display maps; then, every object E E determines an internal

category (which we denote by VE), together with a full and faithful cartesian functor from

the externalization [E] : (V) -> B to p : E -> B.

Proof: We shall refer to Figure 5-7. Let us see how we get our internal category first.

The object of objects, which we shall denote as H is simply pE. For the object of

morphisms, we have the following construction: consider the re-indexings of E along

thr cartesian projections TTO , TT, : H x D -
o; that > *o() and *i(E ) respectively.

3We may also note that being a full internal sub-category of some full sub-category does not entail that it

is one of the embedding category hence the condition has to be additionally imposed One simple reason for

this is that the terminal objects of the latter and the former may not in general coincide; but even this is not

a sufficient condition.



rignro 5-7:
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TlioBo objects are in the fiber EfioX n ,
and wo have the representing arrow (given by

local smallness) KE
'

[*o(-E) *!()] ~+ ^o x QQ. We shall claim that this is our object

of morphisms fti . To see this, let us construct the other components of the internal

category.

The internal domain and codomain morphisms are straightforward namely: do =

TTo o KE and d\ = ir\ o n^ respectively.

Lot us write A : J2o > ilo x HQ for the diagonal arrow. We note that *
\i

o A = idn

(where TTO|I
is either TTO or *i). Hence, A* o

7rJ(1

S
(ir n

o A)* S idn S
idg^.

Hence

ids : E - can be thought of as isomorphic to an arrow (which we shall denote also

as ids) ids : A*(7r5()) -> A*(irJ()). Hence, by virtue of local smallness we have an

(unique) arrow ids : fl -+ [*o( ),*(;)], such that WE^KE) = idE (where KE is the

generic map 7TEW()) -* TEK()) n the fiber over [^(E)^(E)]) which gives us

the internal identity.

For the composition, we shall require the closure of display maps under arbitrary pull-

backs. We show the construction in the lower diagram of Figure 5-7. We denote by

flo(#)
M ^K^')' tlic pullback object of the pullback of TTO o ITE : [xQ(E)i*i(E)]

-* MO

over JT,
o TTE : [;(;), irr(^)l

^ ^ By our assumptions, both *E and TTO are display

maps, and so is their composition; hence the pullback exists and is a display map. Now

we also have the pullback of TTO : o X ft -> "o over jr, : Q x fi - o5 we denote this

pullback object as M o, ^nd the (pullback) projections as p and 7, as shown in the

figure. We have the obvious mediating morphism r : *o(E) M *;() -* fto M ^o-

We have the morphism TTO o p : D M o -* ^o and ^ o 9 : n ^o - "o,

and hence the mediating morphism =
(JTO

o p,Ti o 9 )
: flo o -^ o x o-

We write /<
= a o r, ;LS indicated in the figure. We have, through pullback, ar-

rows m,n : x* (E) M ?() - l*S(E),*t(E)] (and of course, corresponding compo-

sitions *E o m^E o n : w*(E) M ^(E) - H x Do). The representing properties

of *S(E)
s m** : m' T ^) ^ 'E'I(^). and n*( :

)
-> n*ir;(), where K

;
is the generic map 7rEirS(^)

- ir
fiirf(;)

in the

fiber over (^(E)^(E)}. We have from our pullback, that (IT,
o*B om) =

(7r
o7rE on);

hence we may say that (m* o ^ o .f)
-

(n' o ,B o ,S );
hence we may compose and

obtain a map n'(i*) o m^ (
KE )

: m**W(E) - n*^(E). We may also note that

roo^o,,, = ^opor , iru o,or =^ (putting,
= aor :

and that o,,on = ,,o, or .^o.or^.o,. Hence we have that our map

n-, o ,-. is isomorphic to a map o, : ,,M(K - ,WI*K *> *
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local RmalliioKH, wo, have an unique map /.; : n^E) H *i(E) *
[
7ro(^')i T t( E), Rnr '1

that <> = (;).

It is intuitively cleai rather tedious and not too illuminating to verify that the structure

V defined as the 6-tuple (fto,fli,db,0ii"dE,*E) in tne base category B, satisfies the

axioms for an internal category. We shall now define a functor E from the externallza-

tion J^V/?) to E; its action on objects is as follows:

Its action on arrows is given by the following construction. As we know, an arrow in

(V), say from X : A -+ fl to Y : B -> ft is of the form (,/) where u : A - 5 in

B and / : /I - [jr5(),*7()] such that # / = A' and 0, o / = r o u. Now putting
= *E / : A -* iJ x Si

,
wo know that the representing property of (*o(),7ri()]

gives us an isomorphism </>
: B/H C, x $lo(v,nE )

-" E,,(v*(7r5()), w*(7rf (?))); of course

Y>(/) - /*(*/;) lxt us define / = V(/) : o*(xZ(E)),V(ir;(E)). Now wo note the

following: A' = do o / = TTO o *E o / = TTO o v
\
hence A* S (u* o

TT^); again K o u =

c)|0/ = TT, on r.

; of =
ffl ow; honco, (?/* oK*) 2 (y o

;/)* ^(v*o7rf). Thus we may write

(up to isomorphism of course) that / : X*(E) -+ u
m

Y*(E). Now we have the cartesian

lifting of K namely u(Y*(E)) : u*V(E) -+ Y*(E)\ then we define the action of E on
arrows as:

ft,,]
. [W i flo]]

^ [(u(y*())o/) : ^-() - *-()]
It is <,!).,. ,,,.sy to prow (tlirnngl, t|,,. isomorphism <?, and the nature of this construc-

tion), that w,. have in /;,
-A f,,|| ,,,! failhru | fullctor (s(1(

, a)so^ Thcorom ^ 5 7])

Finally we- noto, that given a morphism u : A -* H \ n B, and an object Y B - fk
'" "'" '..... r " f

'''1 1>V1" " "' ll;'- H'l tho ro-in,!.xinK ()') = y . . lhp r!lrtcsiall

l.fting of . at Y i
()') =

(,,,jd o K o
). Obviously, the domain of this lifting is

tho object V o W |,i(h is in t|,o nbcr over A. Let see the image of this under the
functor K: as sta,,,,l above, />,')) = (fi(K

.
( .,, fr whons 7

_
{^ ,,

,

= ;-,,,). , W( ,
|i;

l , wilt,
roltw^'^hriihra","^'"

"" '"'""" '"""" of " wil1' ""PKl '> the fibralion P , while the

fart that ! ,,., =
i(lfc

... ,,, W

ra,
*Wr may check I hat lh,. ,|,,iii*i,, a ,,,| < ,,,|., l .,a ,,, ,, ;

.norphiMn) -/^i;rE oKo,,, Wol,avc, a ;l
/arC

r

a

r'7
l " '>Olh

...
=

,,., ,,,,,. ,. J"
'

"'^oma,,,
of/,. (,r

,-H.K ;L, ( , f :/ ; L'
;

;-{ I-

'

f
* "'
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which is obviously cartesian, llonce tho proposition.

Theorem 5.3.8 On the assumptions of Theorem 5.3.7, if the locally small fibration p : E ->

B has a generic object, then it is a small fibration.

Proof: Let us denote the generic object as A, in the fiber over pA = H - We construct

the internal category VA as in the proof of Theorem 5.3.7. The claim is that there

is a categorical equivalence (VA) S E. We have already seen the construction of

the full, faithful and cartesian functor A : (VA) -> E; let us construct a functor

A : B -* ]C(VA). Since A is a generic object, for all E 6 E, we have a cartesian map

E : E A (we assume that a choice of this map is implicit). Then the action of A is

as follows:

On objects: E i > p(E)

On morphisms: E - F (p/,[/l)

where [/] is defined as follows. We have arrows pF,pEopf : pF -* ftoi hence an arrow

(pF,pE o pf) : pF -> Q x ^0; obviously TTO o (pF,pE o pf) = pF and *i o (pF,p o

P/) = P p/. Hence, we have that (PF, PE o p/)*(7rJ(A))
a (p/J^A) = F and

(PF,pop/)*K(A)) 9? (p/)*((p^)*(A))
= (p/)'(?). Now by the cartesian property

of the arrow pf(E) : (pfT(E) -* F, we have an arrow /' : F -> (pf)*(E) such

that / = pj() o /'. As we have seen, we may write, up to isomorphism, that /' :

(p/*,p?op/)*(irS(A))
- (p/*,pop/)*(irf(A)); hence this gives us, by local smallness,

an arrow [/]:p/^K(A),ir;(A)].

It is straightforward to verify that the pair (A, A) forms an equivalence; and hence the

proposition.

We have, on the other hand, that small fixations are locally small and have a generic

object. The proof is easy and wo sketch it below.

Theorem 5.3.0 Every small fibration is locally small and with a generic object.

Proof: We refer to Figure 5-8. Consider the externalization [C] : (C) - B of an internal

category C in B. For arbitrary objects X,X' : A - Co in the fiber over A, the

representing object for the fiber-wise horn-set functor (or the generic family of maps

X - X') is given as the object [X,X'] shown in the pullback square in the figure, along

... . ..
r y Y1 -* A The generic object for the fibration is simply the

with the projection TTO : [A, A J
-* /I. i "e gun. IK u j

identity id<r; in the fiber over C .



84 CHAPTER 5. FULL INTERNAL SUB-CATEGORIES

7TO

7TJ

Figure 5-8: Small fibrations are locally small.

A particularly simple instance of Theorem 5.3.7 is the construction of the following full

internal sub-category where in the context of the theorem, p is the codomain fibration

p ~ cod : B~* -* B and with B being locally cartesian closed.

Construction 5.3.10 Starting with any arrow G : A - C in B, a locally cartesian closed

category, we may obtain an internal category Full(<7) (that is actually a full internal sub-

category) as follows. The object of object* is C; the object of morphisms is the domain of the

local exponential ^(G) => jrf(G'), where XQ^ : CxC -+ C are the cartesian projections. The

domain map do = n o (^(G) =* 7r*(6')) and the codomain map d }
=

TT, o (**() => *J(G)).
The other components ar-e straightforward.

5.4 The CC-Categorical Framework

In this last section, we shall present the full Theory of Constructions, along with a general

categorical model for it, developed by B. Jacobs ([40, Chapter 5]), reformulating within the
framework of comprehension categories, an earlier construction of Hyland and Pitts ([38,
Section 2.13]). We shall work w.lhin l,l,e general context of

(Intuitionistic) Type theories,
given in Section 3.1. We have the following two forms of judgements (each having three kinds
of instances), made in contexts endowed with the structure of a posct.

Structural Judgements A', .9 e A
", *eA

Kquality Judgements A" =
/,, ,9 = T A', s = t A

For the significance of the meta- variables used in this presentation, we refer the reader to the
conventions stated subsequently. We also have the genera, principle of substitution stated in
Definition 3 1.2, along with the usual ,u,es of equality at a,, levels. The expressions in the
theory are strat.fied into two levels: Orders and Types. Terms at the first level are known
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,T i

* _A_Ar_7
'_ Type S A A = L

LJ- i

E-2

5 B S L

s = i 6 /I 4 = # Type 5 = T A" A =
= t B S = T <E

S-l ~~

S-2

A

W

(p/O > H r/(;>/0 = ?'(;//0 Q(p/0 [P(

A[FUe/>>F] p -
// e 7* [r] A' = A' [r, e P > r)

H A(p/0 = A'(pYO IHp/O :

Type [F] A [F]

x /I [i A > F] X 6 A [AT A' > F]

/i Type [F] 7 [I" > F] A [F] J [F' > F]

J [IV ,4 > F] /[F',A e A > F]

Table 5.1. Basic Clauses

as Operators while those at the second, simply as Terms. Types are Operators of the Order

Type of all Types. We shall use the following variable conventions: metavariables A, L, M ,
. . .

would be used for Orders, 5, T, i/, . . . for Operators, A,B,C,... for Types, and a, <, u, . . . for

Terms. We shall use generic variables P,Q,7?, . .to denote expressions that are either Types

or Orders, and p,<?,r, .. . for those that are either Operators or Terms. Operator variables

will be generally taken from the set A', V, ,..., while Term variables from z,y, *,.... The

free variable set of an expression \ will be denoted as FV(\)- For general variables, we shall

use the symbols , 7;, (,.... The account of the theory is taken from [38]. Table 5.3 gives

the clauses for the closure of Orders indexed over Types,
f

J able 5.2 for the closure of Orders

indexed ovor Orders, Table 5. /I for the closure of Types indexed over Types, and Table 5.5

for the closure of Types indexed over Oiders. We shall label the rules using the following

convention: a typical label for a clause shall be of the form A/H,X-Y-N where A and 13

will be from the set (O, T} and inteipreted as Order or Type respectively; the / symbol

denotes "indexed over" (the A being indexed over B in this context); X will be a symbol from

the set {l,,n,r} all(1 intorpiotecl respectively as Unit, Sum, Product and Constant; Y

shall be from the set {/', /, E, =} and interpreted respectively as Formation, Introduction,

Elimination and Equality; the number N would be optional and label multiple versions of a

clause. The general clauses for equality, substitution, assumption and weakening (labeled as

E, S, A, W respectively) are collected together in Table 5.1. We would drop the A/B part

of a label, in the tables below, since tho caption on the table would contain that information.
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lo

Table 5.2: Orders indexed over Orders.
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E-E-2

E-2 .,,
TEI

^ F
Ex A.K [F] Ex A.K = Ex A'.K' [F]

^ s A S A'(s/x) s := $' A S = 5' A'(s/x)

r */. A- r = r

T Ex A.K T = r Ex A.A'

K(fst(T)/x) Snd(T) = 5nd(T') K(fst(T)/x)

A 56 A(s/x) s A 5 A'(s/x)

K = K' [x

Table 5.3: Orders indexed over Types.
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1 F
IT Type

1-1

E-E-2

E-=-i

lr

t = *T IT

EA,T] A = A' Typc[F] B = B' Type [x A, T]

Ex A.B Type [I

1

]
Ex A.B = Ex A'.B' Type [F]

sA ttB(slx) s = s'A t = t'B(s/x)

E-E-I
*-***** " = U

' E*

6 A.B u u Ex i

3nd(u) B(fst(u)/x) snd(u) =
anrf(tt') B(fst(u)/x)

5 A < B(s/x) 5 A t B(s/z)

E-=-2
^ u J^f.^Ex,

n F
" ^ J yj/1 l

" ^'^l A = A 7

6 Type[F] B = B 7

6 Type [x A, F]
U ~ '

II J 6 A.B 7'ypr [I

1

]
Ilx 6 A.B = Ilx 6 A'.B' 6 7'ypc [F]

j-^j
<B[xA,F] A = ^6 Type [F] t = t

1 B [x A,F]

n-=

Ax A.t 6 Ilx A.B [F] Ax A.< = Ax A'.t' Ilx A.B [F]

uHxeA.B sA u = w' Ilx A.B s = s' A

us B(s/*) w7= u'^'Blafx)

t A [F] / B [x e A, I

A

]
u Ilx A.B

iX G AJ)5 =
<(5/x) B(s/x) [F] Ax.wx = u 6 Hx A.I

(; |

A
[I J

Table 5.4: Types indexed over Types.
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EX <E K.A Type [T] EX A'./l = EX K'.A' Type [F]

seEXe A\4[r] ffl((X,x)/z) [x /i,X A,F]

_ _ _ s = 5' e EX A'.A [F] I = '

tf((X,z)/*) [x A,X 6 A',F]}j-, .
i

5 A' [F] s A(S/X) [T] t B((X t x)/z) [i A, X A, F]

E((5,5),(X,x).f) = t(S/X,s/x) B((S,s)/z) [F]

3 6 EX 6 /f.4 [F] </?[>? EX K.A,Y]

R(A,(X,x).1((X,x)/z)) =
/(fl/z) B(a/2) [F]

/I 7'ypc [X 6 A', F] A' = A'^l
1

]
A = A 1

7'ype [X A\ F]
11

IIX A'.4 Type [T] IIX A'.d = RX /ST'.A' Type [F]

c. A \ Y c. i
'

ri R' h'
f fri *' ^ 4 f v /<' ri

n"
!

AX A',5lIXG A'./l[r] AX K.s = AX A''.^' IIX 6 K.A [F)

t e nx e A'./ 5 G A t = t' e nx ff.4 5 = 5' A'

c

n-=

<5 = t'S'

K [F] 5 A [X A', F]
t IIX A'.

(AX A'.5)S"
= s(S/X) A(5/X) [F]

AX.<X = t IIX e K.A

Table 5.5: Types indexed over Orders.
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The assumption and weakening clauses have the restriction that x and X do not appear

in T or in T. As we can see, the elimination clauses for the sums of Types over Orders

are formulated in the Niartin-L6f style, using the elimination constant E. This is due to a

syntactic constraint which does not allow the projection constant Fst to be defined. The

basic categorical model for this theory was given by Hyland and Pitts in [38]. The model,

and its underlying logic was presented partially in Chapter 3; the system considered at that

time was simply the system of Types indexed over themselves (corresponding to the clauses

in Table 5.4). The categorical model for the complete system is a generalization of the

earlier structure, which was a relatively cartesian closed category. In this generalization,

we need two classes of display maps representing the (dependent) Types and Orders. The

indexing of Orders over Types allows, for any Type /I, the formation of the Order x : A.\o'

hence, we may model this by requiring that the display maps for Types be contained in that

for Orders. Since Display map categories are more elegantly formulated as Comprehension

Categories (as we have described in Chapter 4), we shall model the theory in a system of

Comprehension Categories. There are essentially two other significant points we have to take

care of. First, the fact that we have an Order Type whose Operators are all Types, requires

that we model the free Type variable (i.e. X G Type)] this is done by requiring the fibration

(corresponding to the Comprehension category for Types) have a generic object. Second,

the rules for the sum of Types indexed over Orders needs some care: they are quite strong

(in a technical sense too) and inadequate care in modeling them would lead us to a version

Girard's Paradox; specifically, in categorical models modeling strong sums, sums are usually

given by composition (with the morphism underlying the substitution functor); in this case,

while sums would still br given as loft adjoints to the substitution functor, the incapacity

to define the projection constant Fst, docs not permit us to model the situation through

composition any more; yet, the sums remain strong of course: the problem is handled then,

by requiring that the inclusion of the (fibration of) Types into the (fibration of) Orders, have

a (fibcred) left adjoint] this, along with the requirement that we have strong sums in Types,

give us a model for the strong sums of Orders indexed over Types. The resulting categorical

structure is described in [40] where it is called a CC-Category and we reproduce it in

Definition 5.4.1 below.

Definition 5.4.1 A (XMlat.rgory is thr structure shown in Fiyurr 5-9, find with Ihe follow-

ing conditions on the constituents.

1. Q is a closfd comprehension category.

2. J is a full and faithful functor, and P = Q o J f a closed comprehension category;
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Figure 5-9: The CC-Category.

moreover, I is a morphism from the fibration p = cod o P to q = cod o Q; hence, it is

a full, faithful and cartesian functor.

3. I has a fibered left adjoint V.

4. There is an object ft D such that gft is terminal, and p has a generic object above

It is fairly straightforward to verify that this structure is indeed a model for the theory

of Constructions. We may remark that the left adjoint V endows P with Q-sums (and

products); on the other hand, Q has T'-sums (and products) through I. Doth classes of sums

are strong, and we can see that all the clauses in the theory are appropriately modeled. In

particular, Theorem 4.2.15 entails, in this context, that p is a locally small fibration, and

thus (from Theorem 5.3.8) that it is a small fibration (see below for precise statements);

this allows us to model the Order Type, and the rest of the structure gives us irnpredicative

products over Types. We may summarize the relevant entailments of Definition 5.4.1.

Proposition 5.4.2 (/40, Proposition 5.2.7]) In the context of Definition 5-4-1, we have the

following j>roj)ositions.

L The fibration p is a fibered cartesian closed category.

2. The fibration p is a small Jibmlwn.

3. If the functor P = QJ is the (internal) global sections functor for the internal category

given on the basis of Item 2 above, then the latter is a full internal relatively cartesian

closed sub-category (in &).

Proof: Item 1 follows from Theorem 4.2.13. From Theorem 4.2.15 (and the previous item)

we have that p is locally small; we also know (from Proposition 4.2.6) that B is a
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display map category, and we can verify that the various pullbacks needed in the proofs

of Theorems 5.3.7 and 5.3.8 exist in B which entails Item 2. Finally, Item 3 follows

from Definition
5.3^5.

Remark 5.4.3 We should remark that, in close analogy to Theorem 8.1.5 of Chapter 3,

which asserted the (hi-) categorical equivalence between the category of Martin-Lof Type the-

ories and that of relatively cartesian closed categories, we may demonstrate one between the

category of CC-categorics (appropriately defined) and that of the theories of constructions

(again, with an appropriate notion of morj)hisms). The arguments are a straightforward gen-

emlization of those for the earlier theorem and we do not labour the details. The interested

reader may consult the reference ([38, 2.13]) where the argument is indicated, though in

terms of the display map formulation rather than in those of a CC-Category; the adaptation

to to the latter requires minor and systematic alterations which can be easily carried out on

the basis of Propositions J.5.2 and 4.2.6 of Chapter 4.

We shall invoke this result implicitly in the next chapter, where we would induce a theory

of constructions on the basis of a concrete instance of a CC-Category; the latter is essentially

the relatively cartesian closed structure 5 in Chapter 3, extended into an impredicative

theory, and cast in the current framework of Comprehension categories.



Chapter 6

The Theory of Constructions

In Section 3.2 we have seen the construction of the category ,
which was a model for a

calculus of dependent Types. In this section, we shall see if we can extend our framework so as

to capture impredicative features, and thus model the whole of the Theory of Constructions.

The fundamental difficulty is to model an Order of all Types in the system: syntactically,

this amounts to modeling a free Type variable. The basic strategy is to take advantage of

the fact that in our construction of S, every Type was presented through an expression of

the language A : hence, we may form an object consisting of all these terms (appropriately

quotiented), which then becomes an object of the names of all the Types in the system. Of

course, this is not a Type itself; hence, we have to have a level of Orders besides the Types,

and then see if this level is closed under the usual forms of quantification. As was the case

for
, every Type and Order in the system, is presented through (the equivalence class of)

a certain syntactic expression of a language that extends the language A of Chapter 3.

The constructions are carried out within the framework developed in the last two chapters

namely fibered category theory, and specifically, Comprehension categories. The resulting

structure would be seen to be what has been described in the last chapter as a CC-Category.

In this structure, the category of Types could be conceptualized as a full internal sub-category

within the base category of the CC-Category, and admitting the kind of completeness needed

to model the theory of Consl.rurt.ions (CC-Completonoss, as wo haw informally tormod it).

Thus, the first part of our program for a "Constructive semantics of the A-Calculus" in

which wo imlnro (undor the nilos of dependency and quantification) a full constructive Type

theory on the basis of the Types (of proof-objects) of the pure terms is substantiated.
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6.1 The Syntax

We initiate the constructions by defining a calculus of terms and operators, which can be

seen to extend the language A of Chapter 3. We shall re-use some of the symbols from

that chapter, since they would be interpreted only in the current context. We should note

that the next few definitions arc not to be considered as independent of each other, but as

sub-definitions of a single definition of the class (names) of Types and Orders, which we

shall denote as 0; the definition being inductive, should be interpreted as the smallest set of

expressions satisfying it. We define below, a language that would consist of all the expressions

that make up the names of the Types and Orders.

Definition 8.1.1 Let us fix a set of variables 15, and a suitably large set of (constant) typed

function symbols \ : cach function symbol F has a type consisting of a pair of expressions

in 0, the first component of which would be denoted as dom(F) and the second as cod(F)

(a more precise qualification of the size of the set \ would be made subsequently). Thus, a

typical element of x would be denoted as F : (dom(F),cod(F)), though we would suppress

the type of F whenever this information is unnecessary. The symbol A would denote the class

of \-terms generated from 15. The substitution operator would be denoted as (/')> and the

jxiiring ojycrator as {,). The language A' is defined inductively by the following rules.

1. A C A'

2. 1
,

I
1

A'

,?. Ex : a.ft A', for a, ft A', z 15

4. IIx:a./?e A'
f /ora,0 A',a?U

5. a(F(0)/x) A', for F \, a ,/? A', x free m a (see below)

6. (a,0) A', for a, ft ^ A'

7. (F,n),/orF *, n A

8. V(7') A', for T 6 A'.

We shall use the following convention with respect to Item 6: when both a and ft are A-terms,

the pairing operator would be identified with the pairing combinator of the A-Calculus; hence,

it would be purely a notational device (unless otherwise indicated). We have in this language,

in addition to the standard (unary) binding operator Ax, (binary) binding operators Ex : a.



6.1. THE SYNTAX 95

and \\x : rv.; the rules for hound variables arc given as in Definition 3.2.3. We shall denote

by A70 the class of closed A'-terms.

We shall define on the set of A'-terms, an equivalence relation ~, similar to the relation

defined in Definition 3.2.4 and signified by the same symbol.

Definition 0.1.2 For arbitrary \' -terms A, a, we define by A(a/x) the result of substituting

the free occurrences of x in A, by a. The equivalence relation ~ on the class of \'-terms is

defined to smallest relation satisfying the following set of inductive rules:

1. ~ on the sub-class A C A' is the relation ~ as defined in Definition 3.2,1;

2. for \-tcrms A, II, we have that A ~ U if and only if there, exists a A'-term C with vari-

ables n ,
. . .

,
xn free, such that A = C(OI/TI, . . . ,an /zn )

and B = C(&i/Zi, . . .
,
6n/zn ),

for A' -terms a\ ,
. . . ,an and b\ ,

. . . ,&, with a,
~

6, for 1 < f < n.

Thus ^ is the (syntactic) congruence generated by the relation restricted to the subset of

A-terms. The equivalence classes with respect to the relation ~ would be denoted by the []

notation as before.

The Orders and Types that constitute our system, would be presented on the basis of

^-equivalence classes of a sub-class of (closed) A'-expressions: the corresponding objects in

the category of Types and Orders would be the denotations of these expressions: the link

between a A*
1

expression naming a. TyPc (or an Order) and its denotation would be established

through an operation / as in Chapter 3. The classes of expressions constituting the names

of the Types and Orders would be defined in two stages: first, we shall over-generate the

classes, and present, on the basis of the inductive syntax of Definition 6.1.3 below, a system

of expressions that is a proper superset of the actual system of (the names of) the Types and

Orders; in the next stage, we shall piune the system to yield us the valid classes of expressions,

on (.he basis of the well-deli nod ness of the denotational operation defined subsequently. The

system of expiessinns is defined below: they are stratified into sub-classes corresponding to

th< Types ;ind Oiders libeied ovei (dependent on) themselves and each other.

Definition 0.1.3 The strain me given through the following set of simultaneous inductive

definitions

Types The ,srf of Tyjx cjr/m'.s.sifjw w denoted by the symbol A, and is comjxtscd of the classes

AO find A
| defined Ix'low.
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Basic Types The set of Basic type expressions, A ,
is the smallest set satisfying the

following conditions.

[x] AQ where x A

[Ex : a.0] A where [a], [/?]
A

[Ux : a./3] 6 A where [a], [/?]
A

[V(r)J Ao where [T] 6 $

Complex Types The set of Complex type expressions, AI, is given by the following

conditions.

[Ex : 4>.a] AI u;/ere [<] Aj (J *, [a] AQ

[Hx : <j>.a] AI where
[<j>] A! (J *, [a] A

Orders The set of Order expressions $ is the smallest set satisfying the following conditions.

[loMHc*

[Ex:<M]* when
[</>] *|J A, [JZ] *

[II x : </>.^] * where
[4>] *|J A, [II] *

We have, in addition to the rules above, the following set of substitution and transformation

rules; each is applicable to cither of the strata AI or 4>, for which we use the generic symbol

A.

[Vy:A.B(F(y)/x)]b where [Ex : C.B] A, F : ([A],[C])

[Ex :/l.Ey: #.C((x,y)/y)] A wAerv [Ey : (Ex : A.B).C] A

[Ey : (Ex : A.B).C] A

7n the statement of these rules, we use the pairing operator explicitly fief.
remarJb following

Definition 6.1.1). We shall denote the union A U $ as 0. The restriction of the classes of

the expressions defined above to (equivalence classes of) closed A' -terms would be denoted by

AS, A?, <J> rrfijxctiwly, and A, and (-)".

I'Yoin Iho term syntax of A', wo liavp the notion of an occurrence (of a sub-term) in any

term x such that [x] 0o; we shall denote by occ(x) the set of occurrences in x, which is

but the domain of x (when x is considered as a tree). The replacement of the sub-term at

7 orr(j-) by some (PI m y would be denoted as
r[j/]7 ,

.and thus, the obvious generalization



6.1. THE SYNTAX 97

for a set of replacements at a set of occurrences. The sub-term of x at 7 6 occ(x) would be

denoted as x|7 .

The (partial) operation which gives the denotations of the classes of expression in

defined above, and which are the objects in the category of Orders and Types, is defined

below. We have seen, in Chapter 3, that the denotations of the Types are essentially sets of

equivalence classes of A-terms with respect to the relation ~: That would remain to be the

case for the basic Types; for the other classes, they would be sets of equivalence classes of

(a sub-class of) A'-terms, with respect to the ~. We shall embed these sets within a class

of objects that are known in the literature as u>-Sets. These are essentially sets, but with

a set of realizers (A-terms) attached to each element. We furnish a (slightly modified; cf.

Remark 6.2.27) definition below, though the salient properties of the category c^-Set would

be explored in the next chapter.

Definition 6.1.4 The category u-Set has the following constituents.

Objects: Objects are jxiirs (A\h) where X is a set and h is a relation in A x X, and such

that Vx 6 A'.3n A.n h z. We say that n realizes x. We would annotate the relation

as \~x - whenever necessary.

Morphisms: A morphism f : (A',h^) * (X, r-y) is a map f : X + Y satisfying the

following condition:

3n A.Vx <E A'.Vp A. (p \-x * = (n p) hy /(a))

we say that n tracks / (denoted by n h f); for any morphism /, we shall denote a code

which tracks it, gcncncally, as f.

The operation acts on terms to yield objects of the category u;-Set: it is defined

relative to an (partial) interpretation () (given in advance) of the set x of function symbols as

morphisms of the category. For F : (A, /?), we shall stipulate that (F) : A -+ B, whenever

defined. Obviously, not every symbol in the set \ need have a well-defined interpretation for

instance, either of the denotations of domain and co-domain may not be defined; we would

be concerned, in what follows, only with that subset of x that has a valid interpretation we

would call it the valid subset, and use the symbol x f r it; - As mentioned earlier, we shall

qualify the si/o of tlio wt \ as being largo enough for every morphism / : f[A\ -+ f[H]

(AJj 0) in u>-Set to have some symbol F X sucl tnat (*')
= /

The rules for the evaluation of the operation requires that we should consider it as

defined over a class of expressions which is a superset of 0: this larger class would be

denoted by the symbol as
l

{, and is defined below.
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Definition 6.1.5 The class of expressions known denoted as are obtained according to

the following rules.

C Q+

[*:>!.*] GoAM /Ml
=* (B(a/x)] <E Q+

The main clauses in the definition of below, are supplemented by the following substitution

rule for the evaluation of the operation on 0+ expressions containing occurrences of function

symbols from (the valid subset of) \-

for x containing a sequence 7 = {7i,"-,7n} C occ(x) of occurrences such that VI <

t < n.x|^ = /i (PI) with Ft X, we have that

f(x]
=

j>[y]
where 39l (?

.VI < < n.fe] = (F,)(\pt ]) f\y
=

x[qi ]yi fenk

The main clauses in the definition of / on expressions are set out below.

Definition 6.1.6 The operation yields objects in the category w-Set, with the underlying

sets consisting of certain ^-equivalence classes of terms of a sub-class of A' expressions. The

definition uses an auxiliary operation operation V(-) which is defined subsequently.

j>\x]
= {[6(n/J-)]|3 \.y~x/\b Jy] forxe\

fax
: a.(3]

=
{[(a, 6)] | [a] /[a], [6] f\ft(a/x)]}

we denote the first projection WQ : /[Ex : a.
(3]

* /[a] as TT

{[/] |V[a] 6 /[a].3[t] fl/(a/*)].Vn A.n I- [o] => /n h [6]}

,
/or[o],lfleAg

x :<*./)]
=

(6.1)

{[(f,f)]\(F (M,[* : .^] x A '2 o F = id A/ I- r)

otherwise

fl*o]
=

{[ft]}

/['I
-

{KlIWeAgA/Ww^""'} (6.2)

(7')]
=

<|V(x)]|[x]6^[7']}

'

(6.3)

The operation ()* in 6Vu,se ^?.^ defined as follows:

_ J\

(^

y : z.Jl t/x 6 A

oth
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As we can see, the sets in the range of the operation would in general consist of (equivalence

classes of) terms from a sub-class A'. We define the operation V(-) on such terms through

the following clauses:

1. for x A, we have V(x) = x

2. for (z,y), we have V((z,y)) = (V(z),V(y))

8. for all other elements not covered by the clauses above, we have V(x) = Q

It may be easily verified that this definition covers the relevant class of expressions. Finally

we define the rcalizability relation h, presenting sets in the range of f as u-sets, through the

following clauses:

1. for x A we have n h [x] <^ n [x]

2. n h [(z,y)] <=> 7r (n) h [s] A*i( n )
h

[y], unless (x,y) A in which case the previous

clause applies.

3. for all other equivalence classes of terms, not covered by the clauses above, we have

The operator V invoked on the right hand side of Equation 6.3 can be seen to have the

action of replacing every sub-term of its argument that is not a A-term, by the A-term ft:

it leaves the rest of the term unchanged. As we can see, the operation / is partial on its

domain, and as we have mentioned earlier, we shall prune each of the classes we have defined

in Definition 6.1.3 symbolized by the symbols Ag,A?,$ and A and to admit only

such expressions for which the operation f is defined. Such classes would be characterized as

valid and in the sequel, we shall use the symbols above, as well as the names Basic Types,

Complex Types, and so on, for only the valid classes of expressions defined and stratified

according to Definition 6.1.3.

Wo have a couple of simple propositions that follow easily from the definition above.

Proposition 6.1.7 For an Order [0] 6 *, the map ^ :
f[<j>)

-
f(V(4>)} : [*]

~ [V(x)J is

tracked by the identity \-tenn f.

Proof: We shall consider the various classes of expressions that may make up the level of

Orders. The proposition is trivially true for the classes [lo ]
and [F]: the operator V

yields the Basic Type [U], and the .nap ifr
is tracked by the A-term /; Now consider

an Order of the form [5Jx : tfJtJ: by an easy structural induction, any [x] f[x :
<t>.lt]
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can be seen to have the following property: x is constructed by induction on items 6

and 7 of Definition 6.1.1, and there exists a set TT of occurrences of sub-terms in x that

exhausts all sub-terms of x not in .the set A; moreover, the definition of the operator V

tells us that V(x) is obtained precisely by replacing all such occurrences of sub-terms

in the set TT by the A-term ft; now consider the map ^ : [x]
>-+ (V(x)] (<

= Ex : T.R) :

from the way that the operation h is defined, we can see that [x] is realized by A-terms

n such that all the nodes corresponding to the occurrences in the set TT are nodes in

n too, and are (labeled by) terms in [17]; this condition holds precisely for any realizer

for [V(x)J too, since exactly those occurrences have been replaced by ft: V(x) agrees

with x at all other occurrences. Hence exactly the same set of A-terms realize both

[x] and [V(j)J and the map r/^ in this case can be seen to be tracked by /. A similar

argument works for an Order of the form [IIx : <^.7l): any object in its denotation is of

the form (/',/), and the operator V acts on it to yield (ft,/); both (F,/) and (ft,/)

are tracked by the same set of terms (namely [(ft,/)]) and thus the map n^ is tracked

by the identity.

Corollary 6.1.8 lor any term x suck that [x] Y = /[y], y 0, we have that the set of

rcalizcrs (n\n\- Y [x]}
= [V(x)].

Proof: We use exactly the same argument, now extended to all classes of expressions in 0.

6.2 The Structure

We shall use the syntax of 0, and the definition of/ to construct the fibrations that instance

the relevant CC-Category. As before, we shall work in the framework of Comprehension

Categories.

Definition 6.2.1 We define the category B to be the following sub-category of the category

w-Sct.

Objects: Objects are sets of the form f[<] for [</>]
0.

Morphisms: All morphisms in the category are u>-Set morphisms; they are of two types:

s-morphism: s-morphisms may be defined on the basis of the following clauses:

1. The identity map on any object, tracked by the A-term Ax.x =
/, is a 8-

morphiftm;
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2. An s-morphisms F : flSx : Q
./J]
_ /[Sy : 7.6] is a w-Set morp/iism suc/i

that for some s-morphism G : f[a] ->
[7] the diagram shown in Figure 6-1

commutes.

Figure 6-1: s-morphisms.

F-morphism: A F-morphism is defined to be a map isornorphic to the projection map

We have constructed tlie objects of B so as to he u;-Sets, and we can easily verify that B

is a (non-full) sub-category of the latter, through an embedding we shall denote in the sequel

as z; we record the fact below.

Proposition 6.2.2 B is a sub-category o/w-Sets.

There are, of course, a;- Set morphisms which arc not present as B rnorphisms specifically

morphisms between objects of the form z : <>, for which the commutation conditions in

the definition of s-morphism fail. The embedding is thus not full. We may see from this fact

that we have been generous in stipulating the size of the set \' in the sequel, we shall require

only those morphisms in u;-Set that are in the image of the embedding t, to have a name in

the valid fragment of x-

The category B would be the base of our fibrations.

Definition 6.2.3 The Category $ is composed of the following classes of entities.

Objects: Objects are families T = {Tt } x^ such that there exists a valid * -expression

[Ey :
<j>'.f] such that <f>

=
f[4>

f

)
6 B and for each i = [a] </>, Tx = f[f(a/y)].

Morphisms: A morphism f : {Tx } x^ -* {Ry } y^ consists of a s-morphism u :
<j>
- V in

B, along with a family of maps /={/,: Tx -* R
u(x} } x e<t>,

such that there exists a
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X-term f (called the realizer for the family) such that any member fx of the family f is

tracked by the X-term fa, for any a h x.

It may be guessed that tJie category 4> would represent the fibration for Orders. The corre-

sponding construct for the Types is as follows.

Definition 6.2.4 The Category A is composed of the following classes of entities.

Objects: Objects are families a = {ax }x ^ such that there exists a valid ^-expression

[Ly : fi.a] such that $ =
$[$'] B and for each x = [a] 6 </>, ax = f[a(a/y)].

Morphisms: A morphism f : {aT }xe<t>
~*

(0y}vit> consists of a s-morphism u : $ > ^ in

B, along with a family of maps f =
{fx : ax >

/?u(z)}z4 such that there exists a

X-term f (called the realizer of the family) such that any fx is tracked by the term fa,

for any a h x.

We can see that according to the definitions above, any object of $ say the family

T =
{^r}x x^j

in Definition 6.2.3, corresponds to an object f of the form /[Ex :
</>.f] e B;

conversely, any object in B of the form /[Ex : <j>.R] with [Ex : 4>.R\ an Order expression,

corresponds to an object {^[v

%J =

We would refer to this object as Ex : 4>.R\ as we can see, every object of $ can be thought of

as given by Ex : <f>.R for some [Ex : <j>.R] $. In the sequel, we would be a bit loose, and

refer to any object of $ as an object (of the form) Ex : <.T (for suitable T). Similar remarks

apply to objects of A.

We may define now, the functors that would constitute our Comprehension Category.

Definition 6.2.5 The functor Q : $ -> B~" is defined to have the following action.

On Objects: The object T =
{^rl^gX w mapped by Q to the F-morphism TTO : f ->

(j>
in

On Morphisms: The morphism T = {Tx }x f [<f>]

-> R s (Rv } v f^ consisting of a s-

morphism u :
/[</>]

->
/[^>] m B, along with a family of maps f =

{fx : Tx -

^U(T)} T /[^,]>
is mappped by Q to the commuting square in B, shown in Figure 6-2.

where the action of the B -morphism f is as follows:

where [a] 6 f(4>] and
[t] T

[a]
.
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= /[Ey :

Figure 6-2: Functor Q on morphisms.

To validate this definition we must show that / is a valid B-morphism i.e. it has a realizer.

Proposition 6.2.6 The morphism f, as defined above, is a valid B-morphism.

Proof: We may verify that / is tracked by the A-term corresponding to:

where u' tracks u and / is the realizer for the family /.

As is usual in higher-order Type theory, there is an embedding of Types into Orders;

categorically, this corresponds to a full and faithful cartesian functor from the fibration of

Types into that of Orders. This functor would be denoted as J in our system.

Definition 6.2.7 The functor I : A - 4> is dejincd to have the following action on objects

and arrows.

On Objects: Consider an object x : <ft.a; the action of I may be defined as follows.

I : Ex : 4>.a >- Ex : </>.Sy : a.lp

On Morphisms: Consider a morphism {ax }x^ -> {Py } vw in A, given by a s-morphism

u : 4>
-* in B, along with a family of maps f = {fx : ax ->

/?(*)}** H* "0e w rfer

I is the 4> morphism consisting of the s-morphism u along with the family f = {fx }x 4>,

where the effect of any f'x may be represented as ((fx o 7T ),n).

The realizer for the family /' is easily seen to be the A-tcrm corresponding to the combinator

Az.((/z)o7To,ft) (where / is the realizer for the family /). Functorial properties may be
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easily verified and we shall not labour the point; cartesian- ness is also easy, and we shall

prove that after the Comprehension Category structures have been verified.

As we had mentioned earlier, an important consideration in (the interpretation of) the

closure of Types under existential quantification over Orders, is the reflection of the fibration

of Orders into that of Types. This requires the existence of a (fibered) left adjoint to the

"inclusion" functor I.

Definition 6.2.8 The functor V : $ A is defined to have the following action on objects

and arrows.

On Objects: Consider an object x : <j>.T; the action ofV on this is

Ex : 4>.a t- Ex : 0.

On Morphisms: The morphism T = (Tx } x^ * R = {Rv } V t consisting of a s-morphism

u : 4>
-> V n B, along with a family of maps f = {fx : Tx - Ru (x)}X <j>,

is mappped by

V to the A morphism consisting of the s-morphism u : <f>
*

1/?, and the family of maps

V(f) = {V(/x )
: V(Tr )

-> V(RU(X} ) : [V(a)] ~ [V(6)]}r ,, where [a] Tx , [6] R
u(x) ,

and fx : [a]
->

[6].

We have to verify that this definition is valid.

Proposition 6.2.9 The functor V as defined above is a valid functor.

Proof: Since Tx and Ru (x )
are both valid (basic) Orders, for any x <, we shall argue for

general [T],[R] e $ and a 4-morphism F : f[T] -+ f[R] (i.e. F and its domain and

co-domain are in the fiber over the terminal object /[lo]; no generality is lost in this

move). As we have seen, the action of V on F is the A-morphism V(F) : f[V(!T)]

f[V(R)} : [V(x)J ~ [V(y)J where F : [x]
>->

[y). We claim that this is well-defined, i.e.

for any [V(x)] #[V(T)] there is an unique (V(j/)] in f[V(R)] satisfying the condition

that F : [x]
*->

[y]. Note that this obtains immediately if f[T] S /[V(T)] for then for

any [V(x)] we have an unique [x] such that TJT : [x]
>-+

[V(a;)] (cf. Proposition 6.1.7), and

hence we shall have an unique [V(y)J such that F : [x]
-+

[y]. Now suppose this is not so:

i.e. we have distinct [x],[x
r

] [T] such that (V(x)J = (V(x')J- Suppose F([x\) = [y]

and F([x']) =
[y'}. From Corollary 6.1.8 we have that {n\n h [x]}

= [V(x)]; hence

{n|n h
[a:]}

= {n\n h [x']}. But the set {m |
m h [y]}

= [fn] where / tracks F, and

7i [V(x)j. Hence {m \

m h [y]}
= {m |

m h [y
7

]} both being [fn] for some n [V(x)];

but [m\m h [y]}
= [V(y)] (by Corollary 6.1.8); hence [V(y)J = [V(y')]. Hence we have
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an unique [V(y)J satisfying our condition even in this case. The only other condition

we have to check is that the family V(/) in the context of our definition, has a realizcr.

This follows easily from the consideration that both \x] and [V(x)] are tracked by the

same class of A-terms and thus each V(/*) is tracked by the same A-term that tracks

ft . Hence the rcalizcr for V(/) is the same as that for /.

We may now establish the basic facts about the structures that we have defined.

Lemma 6.2.10 Let P = Q o I; then p == cod oP is a fibration.

Proof: Consider an object a' = Ss : <ft.q in A, and any morphism ti : -* ^ in B.

The cartesian lifting of u at a' may be constructed thus: consider the pullback of

TTO : f[Zx :
<j>.a]

-* /[<] along u shown in Figure 6-3 where y does not occur free in

Figure 6-3: Cartesian lifting of u.

a. Let U be the symbol in the set of valid function symbols \ such that (U) = .

The term ET/ : 0.o(l/(y)/z) is a valid Type expression and the corresponding family

l^y : 0.a((7(y)/x), an object of A. Moreover, reasoning as in the category of Sets shows

us that this square is indeed a pullback cone. The morphism v is essentially the identity

Q-definable map /, and the corresponding morphism in A consists of the s-morphism

u along with the constant family {lx } X <t>,
realized by the term Ai/./ (/ being the stan-

dard identity combinator); universal properties of the pullback cone yields that this is

a cartesian map and hence, the cartesian lifting of u at a'.

In the sequel, we shall confuse (the name of) a B morphism with the symbol in the set \

which is assigned the former by the interpretation function (). This convention shall extend

to combinations of B-moiphisins built up by composition (indicated by the symbol o), and

other categorical operations (on morphisms) such as pairing, for which we shall use the
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symbol (-,-). We shall freely mix the functional notation with a combinatory notation for

instance, the composition combinator would also be denoted as o: the meaning would be

clear form the contexk We shall also use the symbols TTO and in generically for cartesian

projections, projections constituting a pullback cone, and also for the projection combinator

in the A-Calculus. It should be remarked that such overloading of symbols is motivated: in

all such cases, the A-term tracking the corresponding morphism would be constituted (as

a combinator) exactly as the expression for the rnorphism built up as indicated above a

standard aspect of the correspondence between cartesian closed categories and the typed

A-calculi ([44, 14]).

Lemma 6.2.11 We have the following implication:

f cartesian in A ==> P(f) is a pullback in B.

Proof: Consider objects Q = Ex : (f>.a and (3
= y : V>./? in A, and a cartesian morphism

/:**/?, consisting of a s-morphism u :
f[<j>]

+
/[V7

]?
and a family {fx

'

otx *

Ai(x)}xe fui-
As stated in Definition 6.2.5, the image of / under P is (isomorphic

to) the commuting square in B, shown in Figure 6-4. Now the assumption that / is

[0] u ^fW

Figure 6-4: Pf is a pullback in B.

cartesian, entails that any other morphism g : Sx : ^.7 -* /? "over u," factors through

/ through an unique morphism g/f over the identity id^. Then ( dom <>P)(g/f) is the

mediating morphism, and we have the universal property of the square.

The last two results tell us that P is a Comprehension Category.

Theorem 6.2.12 P is a full comprehension category with unit.

Proof: From Lemma 6.2.10 and Lemma 6.2.11 we have that P is a Comprehension Category.

It is easily seen to be full: for objects a = Es : <ft.a and /?
= Sy : 0.0 in A, any
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morphism / : P(a) -
P(fl) in B~* would bo a commuting square of the form shown

in Figure 6-4, where /, u are now arbitrary B morphisms. There exists a morphism

/ in A corresponding to (/, u), that consists of the s-morphism u, and the family

{/x} r /^],
such that any fx in the family is tracked by the A-term corresponding

to Ai/.ffi o (f(V(a),v)), where / tracks /, and x =
[a]. The defining property of s-

morphisms (cf. Definition 6.2.1) tells us that this is a valid A morphism: the realizer

for the family can be seen to be A/ZI/.TTI o(/(/i,i/)).

The fibration p s cod o p has a fibered terminal object: for any object /[0] B, the

terminal object in the fiber over
/[</>]

can be seen to be the object x : 0.fl. Note that

when AO, we have the object x : 0.x = Sx : 0.1), which may also be taken to be

the terminal object. The terminal object functor lp : B -> A : /[0] i-> x : 0.fl and

can be verified to be a right adjoint to P = dom o P. Hence the proposition.

The proofs of the Lemma 6.2.10 through Theorem 6.2.12 can be seen to be generalizable to

the category $. Hence we may assert the following.

Theorem 6.2.13 The functor Q : l> -> B^ is a full comprehension category with unit.

Proof: We simply replace, in the proofs of the Lemma 6.2.10 through Theorem 6.2.12, A by

$. All the arguments may be seen to be valid for the latter.

We explore next, the relevant quantificational structure of the Comprehension categories.

Proposition 6.2.14 The Comprehension Category Q has Q-sums.

Proof: This proposition states that for any object T = s : 0.T $, the re-indexing functor

(PT)* has a left adjoint I/r satisfying the Beck-Chevalley condition. As we have seen

in the proof of Lemma 6.2.10, the re-indexing functor takes an object x : 4>.R to the

object Sy : (Sar : <!>.T).R(ir (y)/x) (using TTO as the name of the morphism PT). We

claim that the left adjoint to (PT)* has the following action

: T.R((x,y)/y)

economizing on variables in the substitution as before. Let us see how this comes about.

Consider a 4> object given as Xz : 0.5, and a 4> morphism

U : Sy : (a : ^.T).R -> Sy : (2x : <j>.T).S(v (y)/z)

over the identity: of course, U is actually a family {l/v}
tf f[a: : <t>.T\'

We assume that

the family is realized by a term u. Now for any [a] #[0], the member of the family
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y : (Si : <t>.T).R(irQ(y)/x) indexed by [a] is /[Ey : T(a/x).R((a,y)/y)]i a typical ele-

ment of this is [(6,c)J with [6] flTW*)] and [c] fl/Z((a,&)/y)]. On the other hand,

a typical elemen^of the member' of the family y : (x : <fr.T).R corresponding to an

index [(a, 6)] 6 #[x : <fr.T] is [c] f[R((a,b)/y)] (for the same a,6,c as in the previous

sentence). Now suppose U,/a nj
:

[c]
->

[s]
for [s] e f[S(a/z)]: we shall define an

(unique) A morphism U* : x : <ft.y : T.R((x,y)/y) -> * : <ft.5, having the following

action:
Ufa

: [(6,c)]
->

[s]. Suppose the realizer for [/ was the term u: since [(a, 6)] is

realized by the set [V((a,6))]
= [(V(a), V(6))], we can say that

#[(a MJ
is tracked by the

term u(V(a),V(6))
= n (say). Then we can see that

Ufa
is tracked by the A-term cor-

responding to noTTi, and thus the realizer for the family (I/*) is the term corresponding

to \y\x.(u(y,iro(x)))(iri(x)). We check the factorization condition through the unit.

Consider the object obtained by re-indexing the object Ex : <.y : T.R((x,y)/y) along

PT: we shall denote it as X the precise $ expression for it is not very important;

we have a $ morphism 77
: Ey : (Ex : <j>.T).R

> A", and we may say, of any member of

it, indexed by [(a, 6)] f[Ex : <.T], that
r;,/o jv.

:
[c]

H->
[(6,c>] where all symbols are

interpreted as in the context of their earlier use; the family may be seen to be realized

by the term corresponding to AXT/.(TTI(X), y). We also have the morphism U' obtained

by re-indexing [/* and we can see that its member indexed by [(a, 6)] has the following

action: W, ^ : [(6,c)]
i-+

[s] (where, as we had stated earlier U,/a ^v,
:

[c]
-

[s]).

This family is realized by the term corresponding to Aj/x.(w(7r (y),7r (x)))(7ri(x)). As

we can easily see, for any [(,&)] ^[X)x :

</>.?'],
we have that if (/,/

fl JA,
: [c]

>-
[3], then

we would have that V. ,. o
r/./ ^ :

[c]
-

[(6,c)] i->
[s] and hence the proposition.

We would expect the Beck-Chevalley condition to be satisfied since the operation is

essentially one of composition. We make the reasoning explicit. Consider a cartesian

morphism / : Sx : <j).R(u(x)/y)
-* Ey : ^.R\ as we have seen (cf. Lemma 6.2.11), this

may be taken to be the general form of any cartesian morphism. We shall denote the

domain by E and the codomain as E', we have seen that this may be taken to be

the general form of any cartesian morphism. The image of / under P is the pullback

square (in B) shown in Figure 6-5. We consider an object P = Zz : (Sy : j).R).S. We

have to show that the canonical natural transformation E^(Po/)* -+ (/>/)*' is an

isomorphism. Referring to the figure, the action of (Pof)* on P is the $ object

q : (Sx : 4>.R(u(
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= />/

Figure 6-5: The Beck-Chevalley Condition.

with the usual conventions 1

, The action of LE on this object can be seen to be

Ex : 0.q : R(u(x)/y).S(((u o 7r )(q), iri(a))/z)((g t a)/a)

(6.4)

upon simplifying the substitutions. On the other hand, the action of # on P is the

object

The action of (/>/)*
= u* on this is the object

(6.5)

upon simplifying the substitutions. Comparing Equation 6.4 and Equation 6.5, the

proposition follows easily.

The proposition that Q has Q-products is entirely analogous. We make the details explicit.

Proposition 6.2.15 The Comprehension Category Q has Q-products.

'cf. Remark after Lemma 6 2 10
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Proof: This proposition states that for any object T = Dx : <j>.T *, the re-indexing functor

(PT)* has a right adjoint IIj satisfying the Beck-Chevalley condition. As we have seen

in the proof of Lemma 6.2.10, the fe-indexing functor has the following action on objects.

S;r
.

^.fl
_ y ; (Ex :

We claim that the right adjoint to this has the following action:

y : (Ex : 4>.T).R > Sx : <ft.IIy : T.R((x,y)/y)

Let us see how this comes about. Consider a $ object given as Zz : (f>.S, and a

morphism

-
y : (Ex : 0.

over the identity: of course, V is actually a family {^y} y^[Y,x : d>.T]*
^e assume tnat

the family is realized by a term u. Now for any [a] f[<f>]i
^ne member of the family

Ry : (a : <t>.T).R(x (y)/x) indexed by [a] is f[Uy : T(a/x).R((a,y)/y)]. Now consider

a typical element of the family Ez : 0.5 indexed by [a] f[<t>] say [d\ f[S(a/z)].

Consider the B-morphism F : f[T(a/x)] -> /[Ey : T(a/x).R((a,y)/y)], which has the

following action:

F:(b] -
[((a,6), C

)] (6.6)

where
[c]

= a6 (W) (6.7)

This may be seen to be tracked by the code / =
Ax.((V(a),x),(ti(V(a),x))(V(d))>.

It can easily be seen that [(F,/)] /[fly : T(a/x).R((a,y)/y)]. We define a (unique)

morphism

U* : Vz : 0.S -, Ex:<t>.\\y:TJ!((x,y)/y)

the member of which indexed by [a] #[<) has the following action:

Ufo'-W^KFJ)]

the family may be seen to be realized by the A-term corresponding to

We have to verify the factorization condition through the co-unit. Consider the object

obtained by re-indexing the object Ss : <ft.IIy :T.R((x,y)/y) along PT\ we shall denote

it as X the precise $ expression for it is not very important; we have a 4 morphism

c : X -+ y : (x : <j>.T).R and wo assort of any member of it, indexed by [{a, 6)]
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f[Vx r^.7
1

],
that c

{^ h)]
: [(f'J)] -+

[c] where
[r] is as given by Equation 6.7 (for

general [(F,f)] in its domain). The family can be seen to be realized by the term

corresponding to Ayx.7r 1 ((7r 1 (x))(7r,(y))). We also have the morphism U' obtained by

re-indexing U* and we can see that its member indexed by [(a, 6)] has the following
action: U^^ }

: [d]
-

[(F,/)J and the family can be seen to tracked by the term

corresponding to

Composing, we have c
{(M)]

o
U'^^

: [d]
~

[c] where, in this case, by Equation 6.6,

we have
[c]

=
#[(<,, fc)j([d])-

1" other words, we have, for every [{a, 6)]

and hence we can say that U = 6 o U'.

The Beck-Chevalley condition has to be verified. Consider a cartesian morphism

/ : Ex : <t>.R(u(x)/y)
- Ey : 0.fl

for which we denote the domain by E and the codomain as E 1
. The image of /

under P is the pullback square (in B) shown in Figure 6-5. We consider an object

P = * : (y : ij>.R).S. We have to show that the canonical natural transformation

(pfY^E 1 -* ^E(PQ!Y is an isomorphism. Referring to the figure, the action of \\.E , on

P is the object

The action of (pf)* = u* on this is the object

= Vx:<t>.\[z:R(u(x)/y).S((u(x),z)lz) (6.8)

upon simplifying the substitutions. On the other hand, the action of (Pof)* on P is

the ^ object

a : (Sa : 4>.R(u(x)/y)).S(((u o 7r )(q),7r 1 (a))/^)

The action of IT/;; OT> this object can bo seen to bo

= Ex : (/>.n : R(u(x)/y}.S((u(x},a)/z) (6.9)

upon simplifying the substitutions. Comparing Equation 6.8 and Equation 6.9, the

proposition follows easily.
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Since the left adjoint established in Theorem 6.2.14 is obtained essentially through com-

position (in B), we would expect that the the sums thus yielded arc strong.

Theorem 6.2.16 The Comprehension Category Q has strong Q-sums.

Proof: Let us assume the same context as in the proof of Theorem 6.2.14. We have an object

X = Sy : (Ex : <j>.T).R', we have the action of the left adjoint 7- (to the re-indexing

functor (PT)*) on X given as the object Ex : <ft.y : T.fl((x,y)/y). Re-indexing this, we

have the object (PT)*ZT(X), and a (cartesian) morphism KX : (PT)*rW -> ErW;
we have the unit of the adjunction rjx

' X -* (PT)*%T(X) and we claim that the image,

under QQ of the composite p
= KX o r/x is an isomorphism. The family p = [ptia MI :

]

can be seen to have the following action:

C
' fl^ '

6)/*))' I
6

' /IT (
fl /x ))

and W e

/[<]. The family ^)
is realized by the term corresponding to Ayz.(ffi(y),z). The image of

this under Q is given as Q (p) : /[Ey : (Ex : <f>.T).R]
-

/[Ear : </>.Ey : T. JR((x,y)/y)],

and has the following action: Qo(p) : [((
a ?^)i c

)l
*~*

l(
a (^ c))]- ^ can ^e seen to be

tracked by the term corresponding to (TTQ
o TTO , (TTI

o7r ,7Ti)), and is easily seen to be

an isomorphism. Thus, on the basis of the remark following Definition 4.2.11, the

proposition follows.

We can see now that Q is a closed comprehension category.

Theorem 6.2.17 Q is a Closed Comprehension Category.

Proof: We know that B has a terminal object namely /($!)
= /(lo) = {!} The sequence

of results Theorem 6.2.13, Theorem 6.2.14, Theorem 6.2.15 and Theorem 6.2.16 then

tells us that Q is a Closed Comprehension Category.

We may note that the sequence of results that lead up to Theorem 6.2.17, may be easily

generalized to the Comprehension Category P: the reader may verify, that the relevant proofs

may be carried out relative to A and the Comprehension Category T3
, by simply using Type

expressions in the place of Order Expressions. Hence we may assert the following theorem.

Theorem 6.2.18 P is a Closed Comprehension Category.

Proof: Straightforward translation of the arguments in the proofs of Theorem 6.2.13, The-

orem 6.2.14, Theorem 6.2.15 and Theorem 6.2.16 in the context of the Comprehension

Category P. The only modification occurs in the proof of Theorem 6.2.15, in the case
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that [Ex : &.T] happens to bo a Basic Type. In that case, we have:

f(ny:T(a/x).R((a,y)/y)\
=

{[/]|V[fr]
f[T(a/x)]3[c] ^[/?((a,&)/y)].Vn

A.n h
[6] => [/n] h [c]}

Since this representation differs from the one assumed in the earlier proof, we re-

formulate it as follows. Consider a typical element of the family z : </>. indexed

by [a] /[<] say [d] f[S(a/z)]. Consider the A-term / =
Ax.(u(V(a),x))(V(d)): it

can be verified that [/] f[Hy : T(o/x).fl((a,y)/y)]. We define a (unique) morphism

ir : Zz : <f>.S -> Zx:<t>.Uy:T.]!((x,y)/y)

the member of which indexed by [a] G [<}>}
has tlie following action:

the family may be seen to be realized by the A-term corresponding to \zyx.(u(z,x))y.

We have to verify the factorization condition through the co-unit. Consider the object

obtained by re-indexing the object x : 0.IIy : T.H((x,y)/y) along PT\ we shall denote

it as X the precise $ expression for it is not very important; we have a $ morphism

e : X > y : (Dx : (j>.T).R and we may say, of any member of it, indexed by [(a, 6)] 6

/[* :
<t>.T], that t

[(a<b)]
: [/]

~
[c]

where [/] /pl : T(a/x).R((a,y)/y)} and /V(4) I-

[c] f[R((a,b)/y)]; this may be verified to be well-defined. The family is realized by

the term corresponding to Ayx.x(7Ti(y)). We also have the morphism V obtained by re-

indexing U* and we can see that its member indexed by [(a, 6)] has the following action:

V,
jv

: [d\
H+ [Ax.(u(V(a),x))(V(d))], and the family can be seen to tracked by the

term corresponding to Azyx.(u(7r (2),x))y. Composing, we have
*[/ fl Mj U',/a JA,

:

[d]
~

[c] where (Ax.(w(V(a),x))(V(<f)))(V(6)) h [c] or (u(V(a), V(6)))(V(rf)) h
[c]';

but

(ti(V(a),V(6))) tracks U
[a]

: hence (u(V(a), V(6)))(V(rf)) h t/w ([d)) or
[<f]
^ U

[a] ([d})

and hence we can say that U = c o U'. Hence the proposition.

We claim now that the fibration p has a generic object.

Theorem 6.2.19 There is an object {f[^]} re f[i ]

in * such tfiai </({/[i1} X /[iol^
=

^' lo '

terminal in B, Qo({#[r]}r x
[lo j)

^ f[T], and such that the object {/[x]} x ^ [r]
A is generic

for the fibration p.

Proof: Consider any object A = Ex : <.a in A, in the fiber over <; and consider the map

A : fty] -* /[F] given as follows:

A:[a]~ [<**(a/x))
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where a* is as defined in Definition 6.1.6, and [a] /[<]. This map is tracked by the

term Ax.ft. The cartesian lifting of A is A : A -> {f[x]} x f[r]
given by the s-morphism

A, and the family A
[a]

: f[a(a/x)]
-> f[a*(a/x)], which maps [6] /[a(a/x)] either to

[6] or to [(fc,ft)] in its co-domain depending on which of the clauses in the definition of

a* applies. The realizer for the family is similarly 7 or (/, ft) respectively (/ being the

Identity combinator).

This is an all-important result and gives us the means to represent an Order of all Types

or equivalently, model the free Type variable. If in addition we may prove that the Compre-

hension Category V has (2-sums and Q products, then we have the closure of Types under

impredicative forms of quantification over Orders. We shall do this by establishing that the

functor V is a fibered left adjoint to the functor Z. Then, the construction of the relevant

Q-sums and products may simply be done by embedding the Types into the Orders, taking

the sums or products in the latter, and then reflecting them back into the former through V.

Let us establish the facts about V.

Proposition 6.2.20 The functor V is cartesian.

Proof: Consider a cartesian morphism / in $: as we have seen in the proof of Lemma 6.2.11,

/ may be taken to be given as / : Ex : (j>.R(u(x)/y) > Ey : ij>.R, for suitable Ey : ij>.R, 4>

and u : f[4>]
-+

[0]. The image of / under V is V(/) : Ex : <j>.V(R(u(x)/y))
-

Sy : V?.V(7?) and we can easily see that this is cartesian in A, from the following simple

fact:

Ex : 4>.V(R(u(x)/y)) = Ex :

the left hand side representing the re-indexing of Ey : 0.V(.R) along u.

Proposition 6.2.21 The functor I is cartesian.

Proof: The result is straightforward: the action of J on any object essentially is to "pair"

every element with the symbol ft. The result is isomorphic to the original object.

Hence, pullback properties of the image of cartesian maps, are conserved. We do not

labour the details, which are quite straightforward.

We have the main result.

Theorem 6.2.22 The functor V 15 the fibered left adjoint to the functor I.

Proof: We consider the following data, sketched in Figure 6-6: an object Ex : $.T $,
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IV(T')

If/*

I(a')

Figure 6-6: The Adjunction.

an object Ey : iji.a A (we shall denote the former as 7
1

', and the latter as a'), and

a morphism U : T' * J(o'), consisting of the s-morphism v :</>> V\ an^ a family

of morphisms / =
{fx}xGf[^-

Consider any [a] /[(/>],
and a typical element [x]

in the member of the family T' indexed by [a] (i.e. [x] f[T(a/x)]). Suppose we

have that U
[a]

: [x]
-*

[(j/,ft)] where [y] fla(6/y)] and w([a)) =
[6). We define a A

morphism f/*, consisting of the s-morphism t;, and a family {^[a]}( rt)ef (</>]'

^e mem^er

indexed by [a] has the following action:
Ufa

: [V(z)] ->
[y] where, as assumed before

U[a]
: [x]

-*
[(y,fi)]. The argument sketched in the proof of Proposition 6.2.9, along with

the fact that y = V(y) (since a' is in A), tells us that this map is well-defined and unique.

We can see that the family U* is realized by the term corresponding to TTO o u where u

realizes U. We check the factorization through the unit T/J/: consider any member of the

family ift> say indexed by [o]; we have that
(r/r')[a]

: [x]
-

[(V(i),n>], while for the

corresponding member of the family 1(7* we have that (J(/*)[a j

: [(V(a?),ft)]
--> [(y,ft;

hence (It/* o
7/r)[a]

: [*]
^ [{y^)l and wc havc that U = IU *

T^r<

We may thus assert the main result of this chapter.

Theorem 6.2.23 The structure set up in the Definitions 6.2.1-6.2.8 is a CC-Category.

Proof: This follows from the sequence of results Theorem 6.2.17, Lemma 6.2.10, Theo-

rem 6.2.22 and Theorem 6.2.19, and the Theorem 6.2.18.

Remark 6.2.24 As wc have slated in Imposition 5.J.2, this fact yield scvcml important

entailments. We have from Item 1 (of Proposition 5.4.2) that p represents a fibcrcd cartesian
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closed category; also that it is locally small. Item 2 tells us that it is small, and from the

constructions, that it is (isomorphic to) the extemalization of an internal category (in B)

whose object of objects is f[Y]. We shall signify this internal category as A. We may check, as

concrete instances of the assumptions of Theorems 5.8.7 and 5.3.8, that representing arrows

for the fiber-wise horn-sets are given as (images of, under the appropriate comprehension

category) local exponentials, and these are display maps; so are the first projections. We may

conclude, on the basis of Item 3, that that' A is a full internal sub-category o/B provided,

of course, that P is the (internal) global sections functor. This is not difficult to verify, and

we do that below.

Proposition 6.2.25 The functor P is the internal global sections functor for the internal

category A; thus it is a full internal sub-category o/B.

Proof: Using the equivalence between A and the extemalization (A), we can see that the

image under P of any object A = x : <ft.q in A (which corresponds to the morphism A :

fW ~* /[r]> usiftg the notation of the proof of Theorem 6.2.19 and thus, to an object

of the extemalization 53(A) in the fiber over /[<]), is the object w : f[Ex : 4>.a\
>

f[(f>] in B~*, and this can be soon to be the pullback of the generic morphism TTQ :

/[Ex : T.x] > f[T] along the map A. This is exactly the action of the internal global

sections functor on objects. On the other hand, a morphism in the fiber over
/[</>] say

/ : x : 4>.a * x : <f>./3 consists (essentially) of a family {/x} r /ui a-8 WG have seen.

The action of P on this is the commutative square in B as described in Definition 6.2.5

(with u as the identity). Each morphism fx in the family, is a morphism between

(denotations of) objects in /[F] and hence corresponds to [the re-indexing of the generic

family of morphisms in the fiber above the object of maps Ai of the internal category

A along] a morphism /' :
f[<f>]

-> A,; this morphism can be seen to be tracked by

the A-term Az.nz, where n is the realizer of the family /. It may also be verified

that the generic morphism 5 (in the context of Figure 5-4) is simply the image of the

generic family of maps (given by local smallncss) in the fiber over AI (cf. Figure 5-7)

under the action of P . It is quite straightforward to verify that / in the commuting

triangle winch is the image of / under P is (isomorphic to) the pullback of the generic

morphism s along /'. This is again precisely the action of the internal global sections

functor on morphisms, and hence the proposition.

Finally, we can see from the arguments above, that A is a full internal relatively cartesian

closed sub-category of B.
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Theorem 6.2.26 The internal category A x.s a full internal relatively eartesian closed sub-

category ofB.

Proof: We know that the functor P is a closed comprehension category. Hence, from Propo-

sition 6.2.25 above and the definition, the result is immediate.

Remark 6.2.27 Before ending this chapter, we should clarify a point regarding the definition

of the category u>-Set given earlier. Normally, the realizers are elements of a combinatory

algebra, usually the (closed) term model of the \-Calculus. In this case, we have taken them

to be \-terms themselves, which is strictly speaking incorrect. However, in the case of our

category B, the set of realizers of any element is a ~
-equivalence class of terms, and ~

extends the (3 -equivalence. Hence the slight incorrectness does not make a difference to any

of the arguments. In the next chapter, we shall use Ihe eorreel definition.

This brings the first part of our study to a close. In this part, we have systematically

developed the idea of a Heyting-scmantics of A-expressions, in close analogy to that for

propositions. The epitome of this development is the categorical structure that interprets

and thus instantiates (cf. Remark 5.4.3) a full Theory of Constructions. In the next part

of our study, we explore the relationship between this kind of semantics, and the traditional

denotational semantics of the Tarski-Scott persuasion. The guiding idea would still be the

strict analogy with the corresponding situation for propositions. Predictably, this would entail

a move towards Toposes, and intuitionistic logic. Remarkably, we shall see that the nature

of our constructions permit a fairly smooth transition into denotational semantics internal

to the Topos: currently a rich theoretical field of study.



Chapter 7

The Realizability Topos

In the earlier chapters, we have traced the induction, on the basis of the A-Types, of a

structure admitting an interpretation of a (impredicative) theory of dependent Types. This

structure was seen to be an instance of a CC-Category, which means that it carries an

interpretation of, and thus instantiates, a Theory of Constructions. This development marks

the completion of one of the major aims of this thesis: it realizes the program of a Heyting

semantics for programs (A-terms) around the general axis of the Curry-Howard isomorphism.

As we have mentioned in the Introduction, a Heyting semantics is a two-step process: it

is completed by giving a "standard" logical interpretation of the category of Types as an

adequately complete internal category in some non-standard universe of (intuitionistic) sets.

Such interpretations are by now well-known: the small complete category of Modest sets

within the Moggi-llyland Rcali/ability Topos ([33, 34, 3G, 61]; we shall describe it in this

chapter), the classifying topos of pre-sheaves over the hyperdoctrine model of the polymorphic

A-Calculus ([62]), the algebraic and the algebraic-localic toposes ([38]) to name a few. In

this dissertation we shall not labour this second step of the process; instead, we shall turn

to the question of the relationship between the constructive semantics developed thus far

and the traditional Tars kian (denotational) semantics (of the terms) ,
within the general

framework of a non-standard intuitionistic universe. More specifically, we shall display the

process of the construction of (in a sense, canonical) denotations of the terms as the directed

completions of the Type of their proof objects within the Realizability Topos in which the

latter is embedded as a full internal sub-category. The resultant class of objects would be

seen (in the next chapter) to be a small category of mterna/directed-complete partial orders

(dcpos), and having a structure generalizing that of the corresponding object in the case

of propositions. From a logical point of view, this has rich implications: the denotational

domains can be formally regarded as (non-standard) se^s with standard function spaces and
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hence wo may reason freely about, thorn in tlio internal logic. Tims, in a sense wo have in

them a rudimentary abstract logic of programs'.

This relationship would be composed and explored within a framework that has gained

considerable significance ever since the endeavor of Scott to conceptualize the domains of

denotations of Programs as (non-standard) Sets with full function spaces ([74]) something

clearly impossible in the classical universe. The idea developed, from Scott, through Pitts

and Hyland ([37, 62, 34, 35]), and to Rosolini ([68]), Phoa ([58]) and a number of other

researchers, that denotations of the Types in programming languages could be formally re-

garded as Sets, if only the constructions were carried out internally within (a categorical

model) of an intuitionistic universe. Such an universe had been known since Lawvere, as an

elementary topos (through an elegant reformulation of the existing notion of a Grothendieck

Topos, constructed for entirely different purposes). A significant turn in this history, towards

recursion theory and Computer Science, was Hyland's construction of the effective topos

([33]) in some sense, the categorical model of the world of constructive mathematics; and

to a great extent, a generalization of the idea of the interpretation of intuitionistic logic in

terms of the category of sheaves on a locale ([37], as re-formulated by Fourman and Scott as

the notion of an ft-Set ([20]). It was thus, a matter of great significance, when Hyland and

his collaborators announced the discovery of a complete internal category within the effec-

tive topos ([34, 36]): complete in a way as to admit the interpretation of the polymorphic

lambda calculus. This category has since been come to be known as the category of modest

sets a name suggested by Dana Scott originally. In this chapter, we shall present some of

the background required to appreciate this history, and embed our earlier constructions in a

suitable way within its framework. In the next chapter, we would take up formally the theme

of denotational semantics internal to the Topos.

7.1 Partial Equivalence Relations

In this section, we shall be presenting some of the material that is well-known in the seman-

tics of impredicative Calculi (for example, System /', and its various extensions), and which

shall serve as a background and motivation for the constructions in which this chapter would

culminate. We shall not pretend to be comprehensive or very rigorous: the interested reader

may consult any of the list of references on this subject that we shall provide in the bibliog-

raphy. The basic material is drawn, with a few alterations, from the excellent discussion by

'We are reminded of a similar attempt by Abramsky to develop a logic of programs as dual structure of

their denotational domains ([2]; also [88])
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W. Phoain [01].

The Partial Equivalence Relations have been known, in their present form, as a "suffi-

ciently" complete category of objects within the Effective Topos, since the late eighties; the

basic framework had fceen known earlier, from the works of Kreisel, Girard, Troelstra and

Scott. After the demonstration by Reynolds, that the Polymorphic Lambda Calculus could

not have any Set-theoretic models, it was left to Hyland, Moggi and later, Pitts, to show that

the salient constructions of a Sct-lhcorclic.iiitcrprctalion could be carried out in a formal uni-

verse of sets, provided the logic was intuitionistic and not classical. In other words, the kind

of completeness required for interpreting impredicative quantification, could be obtained in a

suitable internal category within a Topos- theoretic model of IZF Set Theory. An instance of

such an internal category turns out to be the (image of the) category of partial equivalence

relations (abbreviated hereafter as PER). But before the arguments are cast in the logic of

the relevant Topos, it is instructive to see how the requisite forms of completeness obtains in

the category of PERs itself. This is tho subject of this section.

We shall work on basis of tho rombinatory algebra A, composed of the c/oserfterm model of

the A-Calculus. Hence mention of A-terms in the sequel would generally mean the equivalence

class thereof with respect to the /3-equi valence. We would generally term such a class, as a

code, and confuse terms with their equivalence classes.

Definition 7.1.1 A Partial Equivalence Relation on A is a symmetric and transitive relation

on A. The domain of such a relation R, is defined as the set

dom(R) =
{x \\xRx]

For any x dom(R), we shall write [X]R to denote the equivalence class of x with respect to

the relation R. The set of such equivalence classes would be denoted as "Eft and is defined

formally as stated below.

"En =
{[x]R \x dom(R)}

The subscripts R may be dropped from the notations if the relation is clear from the context.

We may construct a category from the class of PERs provided we have a notion of the

morphisms.

Definition 7.1.2 The category PER has the following constituents.

Objects: The objects are Partial Equivalence Relations over A.

Morphisms: For R, S objects of PER, a morphism f : R - 5 is a map f : ER - ES

satisfying:

3s 6 A.Vx <E A. (a dom(/) = f([x]n) =
[s

-

x]s ) (7.1)
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An element s A that instances the condition in Equation 7.1, is said to be a code that tracks

the morphism f. We may also define a morphism in PER 05 the equivalence class of codes

that track the corresponding map, with the equivalence relation (denoted as SR) given by

S(S
R

)
S

'
< + Vx A. (x dom(R) =* a -

x(S)s'
-

x)

and indicate this by [s] : R > 5.

The category PER turns out to have strong completeness properties; we record the following

fact for reference.

Theorem 7.1.3 The category PER is locally cartesian closed.

Proof: We shall merely sketch the proof: let us first see how PER is cartesian closed. The

product of PERs R and S, is the PER R x S defined below

s(R x S)t & vo(s)Rir

where TTO and TTJ are the standard A-definable projections. The projection maps R -

R x 5 -> S are tracked by TTO and iri respectively. The terminal object in PER may

be seen to be the PER 1 defined by: Vs,J 6 X.slt.

Wo ran define binary exponents as follows: for objects R,S PER, we have the PER

SR defined by:

dom(S
/?

)
- {s A

|
s tracks an arrow R -> 5 }

with the equivalence relation defined as stated earlier:

a(S
R

)a'
< > Vx A. (x dom(/Z) => a x(S)a' x)

The evaluation morphism ev : SR x R -> S is tracked by [\x.iro(x)(iri(x))].

As for cartesian closure in the slices, consider the slice PER/5: the terminal object can

be seen to be the identity map id$. Consider now maps [r] : R -> 5 and [t]
: T -* 5:

their binary product is the obvious map /? x T -> 5. Finally, for exponents we shall see

that the construction parallels the construction of a representing object for the maps

over a fiber (in the context of local smallness). For any i dom(S) we define the fiber

over x as the following PER ltx (or Tx as the case may be).

dom(Tk) = [y dom/Z
| [r)(y)

= x} yRx z & yRz

We define the PER Q as follows:

dom(<2) = {(x, n) |
x dom5, n tracks an arrow Rx

- Tx }

z,n7X> - xSx' n(Tx )

n
*n'
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The first projection Q -> S turns out to be the exponential [t]W [n the slice.

It is also easy to see that PER has equalizers. Consider arrows [n],[m] : R -> 5. We

define the domain of the equalizer as follows:

dom(A")
= {rdom(fl)|(n-x)S(ro-x)}

<3> x(R)y

and this tells us that PER has finite limits.

We can now turn to the question of how PER may provide a model of the polymorphic

lambda calculus (or System F). There are two ways in which this might be seen: first, by

establishing the closure of PER under products indexed by its own set of objects; and second

by establishing a suitable fibration p : PER -+ S equipped with a generic object. We provide

a brief sketch of the first; the second is postponed to the next section.

The basic problem in interpreting System F is to be able to model the impredicative

Types of the form \\X.F(X) (where A' is a Type variable, and F(X) is a Type expression)

and polymorphic abstraction terms of the form AX.Ax : X.x, related through the following

introduction and elimination rules.

t:F(X)[x:A,X:Type] f : JIX.F(X) [x : A] B: Type
AX.< : UX.F(X) [x :A] fB : F(I3) [x : A]

As we have seen in an earlier chapter, we could interpret judgements of the form / : F(X) [x :

A,X : Type] as a Type-indexed class of morphisms {fp : A F(p)} p^TVPe with tne addi-

tional condition perhaps, that the indexing was uniform (in some manner to be explicated)

on Type. The problem upon refinement reduces to the following: suppose we interpret our

Types as objects of some category P, and variable Types of the form F(X) [X : Type] were to

be interpreted in the functor category P
p

,
then given an arbitrary functor F(_) : P - P, we

require an object II(F) P, such that there is a bijective correspondence between the set of

P-indexed set of morphism {/p : A * F(p)] p^p and the set of P-morphisms hom(/i,II(F))

for any object A P. In other words, we require a right adjoint to the diagonal functor

A : P -> Pp (equivalcnlly, the existence of limits of diagrams of type P). Now while these

general limits might not exist (in the naive or external sense) they do exist (more precisely,

an object with the property of H(F) described above) for a category like PER, provided

the family {fp : A -* F(p)] p p satisfies a particular condition: namely, that every member

is tracked by the same code. We may describe such families as uniform. We shall describe

how such "limits" can be constructed below: the key to their existence being that PER* are

closed under arbitrary intersections: : the point to note however, is that such limits do exist
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(in the general sense as the right adjoint, to the diagonal functor) when PER is regarded as

an internal category (in some suitable ambient category), and the notions of adjunctions and

etc. are appropriately internalized. We shall remark on this briefly in the sequel, and for an

excellent discussion on this, refer the reader to [34, 36, 48].

Theorem 7.1.4 The category PER has the property, that any diagram F of type PER
has a u-limit JI(F) in PER, by which we mean, that there exists a right adjoint to the

diagonal functor A : PER - PERPER -*/,e latter category being the category of functors

PER -* PER with uniform natural transformations (see below) as morphisms.

Proof: We note that given an arbitrary collection of PERs {/2,}l/ ,
we may define their

intersection as follows.

Then given a functor F : PER -> PER, we define

11(F)
=

p| F(R)
RtPER

which is guaranteed to exist, as wo have just scon. Now consider any object A PER
and an uniform natural transformation t : A(A) -* F; this means we have a single

code 5 tracking every morphism in the PER-indexed collection of morphism {tR : A -*

^(#)}ePER- This implies that for any x dom(y4), the element s-x dom(F(7)) for

every R e PER, and this gives us a morphism t* : A -+ II(F) : [x]A -*
[a *]n(F)- The

other part of the bijection is easier: any t* : A -+ H(F) tracked by the code s, gives us

the uniform family of maps {<H : A -* F(R) : [x]/?
H- [^-zJFf^lAEPERf J'- c - a (uniform)

natural transformation A(y4) -* F. By the definition of I1(F) as the intersection, the

element 5 x G dom(F(R)) for every R G PER and hence this morphism in PERPER

is well-defined.

The details of the interpretation of polymorphic Types would appear considerably more

perspicuous when sot out in terms of (suitably) complete fibrations. However, the idea

that polymorphic Types were interpreted in terms of right adjoints to something akin to

a substitution (or re-indexing) functor, and that such right adjoints are available in PER

through intersections, would still be basic to the treatment.

This interpretation of System F encounters a irremediable difficulty when sought to be

extended to the interpretation of dependent Types. The straightforward intuition would be

that since PER is locally cartesian closed, we could model dependent Types through the

fibration cod : PER~* > PER: this is guaranteed to be locally small, and hence adequate
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for the interpretation. However, we immediately encounter the difficulty that this fibration

does not have a generic object. Such a generic object would be something like the set of

all PERs, and while swkch a set exists, 'it is not a PER itself. This deficiency rules out the

interpretation of free Type variables, and thus of course, of polymorphic Types. We could

try to circumvent this difficulty through a fibration over a larger category say SET, which

would interpret the Orders: however, while the standard form of this fibration namely, as

families of PERs indexed by sets has a generic object, and is suitably complete, it is not

locally small thus ruling out the possibility of modeling dependent Types. We would then

try to look for an even larger base category, which would have both the properties of local

smallness and the existence of a generic object. It turns out that such a category is available,

and this is the subject of the next section .

7.2 u;-Sets

The development of this chapter parallels to some extent that of the preceding part of the

thesis: there, we had initially set up a relatively cartesian closed category which could model

dependent Types; the problem was that this fibration did not possess a generic object. In

syntactic terms, this was taken to mean that we could not have a Type of all Types, and thus

we had to move to a larger category which did have something like an Order of all Types.

We have a similar intuition here: we shall preserve the fact that PER (fibercd over itself)

can support dependent Types, and look for a larger category which would have an object

corresponding to the object of all PERs. This has been known in the literature for some

time as the category of u;-sets, and contains both PER and SET as full sub-categories. We

have already introduced this category in the previous chapter, and we reiterate the definition

below.

Definition 7.2.1 The category u>-Set has the following constituents.

Objects: Objects arc pairs (X, h) where X is a set and h is a relation in A X X, and such

that Vx G X3n G A. n h x; we say that n realizes x. We would annotate the relation

as \~x whenever necessary.

Morphisms: A morphism f : (X,\~x)
-

(Y,r-y) w a map f : X - Y satisfying the

following condition:

In A.Vx e X.Vp A. (p \-x x => (n p) \-Y /(a))

we say that n tracks /; for any morphism f, we shall denote a rode which tracks it,

gcncrically, as f.
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Wr shall use MIC symbol |i
r \

|
In dcimlc Mt> sH {irA|l \r}.

We would expect that at w-Set would, at the least, have the same kind of closure prop-

erties a*? PER. This is so and wo sketch the argument in the next Theorem.

Theorem 7.2.2 The category cj-Set is locally cartesian closed.

Proof: The category has the terminal object 1 =
(l,h,) where 1 is the singleton set, and

the relation hi is defined to be 1 x A (i.e. any code realizes the single element). Given

w-sets X =
(X,\~x ),

y = OM-y), ^eir product is the w-set (X x Y,\-X *Y) where

(>,") h*xK (x,y) *> w \- x z/\n \- Y y

for any (x,y) X x Y. The exponent Y x
is defined as follows

V* = {/|/ liomw_ S(tl (.Y,r)} wr-,,* / tracks/

and we leave the evaluation morphism to the reader.

As for cartesian closure in the slices, let us consider morpliisms / : A Z and g :

Y * Z in the slice u)-Set/Z: their product is obvious, and so is the terminal object in

this slice. The exponent is constructed in a fashion similar to that for PER. For any

z Z, define the set X z
=

{x X \f(x) =
z}; we turn this into a w-set by defining

Vi Xz .n \~x t
x o n \~x z; we may similarly define Yz . Now the u>-set Q is defined

as follows

Q =
{(2 f fc)|zZ,/ilio

ri I-Q (^,/i) O TTO() )~z z f\ 7T|() tracks the morphisin /i

and it may be verified that the first projection Q -> Z is the exponent /* in the slice.

We can sec the full cmbcddings of PER and SET into u>-Set.

Proposition 7.2.3 There is a full embedding Vs : SET - u-Set.

Proof: For any set X we define the u;-set V5(A')
=

(A',hA )
with the relation r-^= X X A.

For any function / : X -> Y in SET, we have the morphism Vs(f)
'

^s(X) -> V5(K),

which has / as the underlying map, and is tracked by (say) Ai.x A.

Proposition 7.2.4 There is a full embedding VP : PER ^ w-Set.

Proof: For any PER R, we define the u;-set Vr(R) as having the underlying set H/i, and

with the relation h defined by n h [x]n & n [x]R . For a map [s] : R -+ 5 in PER,

we define Vr ([.s]) a-s the map in u-Set having the underlying map [A] :Efi-^Es which

is obviously tracked by all Mie codes in [A]
Fullness follows easily.
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We shall denote the full-subcategory of u;-Set that is the image of Vp by the symbol MOD.

There is an useful characterization of MOD which we state below.

Proposition 7.2.5 MOD is the full sub-category of w-Set consisting of objects (X,\-x )

satisfying the following condition.

Vz,y X.n\;X *A nl~* y => x =
j/ (7.2)

Proof: If R PER, then Vp(R) obviously satisfies this condition (equivalence classes do

not intersect). On the other hand, if there is an object X in w-Sct satisfying the

condition then we may define a PER X as

s(X )t o 3x A', s r-x x /\ t \-x i

We may now verify our intuitions concerning u>- Set -namely that we may define a suit-

able fibration of PERs over u-Set which is sufficiently complete to be able to model both

dependent Types and polymorphism. We shall argue that the following fibration suffices.

Definition 7.2.6 We define a fibration p : p + u;-Set. The category p has the following

constitution.

Objects: Objects are X -indexed families of PElis for any X u;-Set: more formally, an

object Rx, for X u>-Set, is a family Rx =
{Rx}xtX such that each Rx PER.

Morphisms: For objects RX and SY, a morphism f : RX > Sy consists of a pair (/,/*)

where f : X -* Y in w-Set, and fx = {fx : Rx -*
Sj^} x^x a X -indexed family of

arrows in PER, satisfying the condition:

3n A.Vx X.Vp |x X\. (n p) tracks fx

we would say that such an n witnossrs / (or the family fx ), or n realizes /.

The fibration p is defined in the standard way: its action on objects is p : RX -> X, and on

arrows f = (/,/*)'-> /

It is pretty straightforward to see that this is a fibration: we shall not labour the details.

The important point to check is local smallness. The argument is sketched in the next

proposition.

Theorem 7.2.7 The fibration p in Definition 7.2.6 is locally small.
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Prcx>f: Consider an object .V f w-St: and objects /?,Y and ,9* in the fihor p*. Wo define

the object [Rx,Sx] u;-Set as follows:

>/) <* n\-x x/\p tracks/

with the "universal map" TT : [7^,5*] -4 X simply being the first projection * . The

representing map TT** : ir*(Rx )
-> **(5x) in the fiber above [Rx,Sx] is given by:

with the code which witnesses the second component being obviously TI. We shall

verify the representing properties of this structure. Consider any map : Y > A' in

u>-Set, and a map u : a*(Rx) - *(*) in the fiber over K, witnessed by the code k.

We define the map g : Y >
[ftx,S;r] :

j/
-* (x,/) where a(y) - x and / : Rx > 5^ is

that map in PER that is tracked by Jb h for all /i e |y G K|. We can verify that g is

tracked by the code (d,fc).

Thus, the fibration has the basic structure needed to interpret dependent Types. We shall

have to check now if the fibration is (sufficiently) complete. This question, as is well-known by

now, is none too straightforward itself. As we have mentioned earlier, there is a considerable

degree of variation in the criterion of sufficiency, especially when the arguments are carried

out in terms of internal categories (and in the internal logic of Toposes). The notion of

completeness that suffices for the interpretation of polymorphic Types can be summarized

in terms of Benabou's notion of complete filiations that we have stated in Section 5.2, and

repeat here.

Definition 7.2.8 A fibration is said to be complete if it has:

fibered products I.e., for every morphism <j>
in the base, the re- indexing functor <f>* has

a right adjoint U^ satisfying the Beck-Chevallcy condition.

fibcrwise finite limits.

Hence this is what we have to establish for our fibration p : p - u>-Set. Let us look at

fibered products first. Hefore we do this, we shall state a few lemmas we would need in the

argument: most of the constructions are standard, and for a more detailed presentation, we

refer the reader to [48].
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Definition 7.2.9 For a o>-Set A, we may represent an A-indexed collection of objects of

MOD by a mapping <j>
: A - MOD. By the notation f : A *

<j>
we mean that f is a

(extensional) mapping with domain A, and such that Va A. f(a) <(a). We define an

object IIo/i^(a) u>-Set by the following clauses.

A.Va A.Vp |a /*|- (n p) ^(o) /(a)}

(.) /(a)

The significant point is that this object is an object of MOD.

Lemma 7.2.10 The object ]\aA (p(a) defined in Definition 7.2.9 inhabits MOD.

Proof: We shall have to show that IIa/i<(a) satisfies the condition set out in Equation 7.2

above. Consider a code n such that n ^~uaA <t>(a) /A n '~n o x<^(a) 9* But tnen we wou^

have:

Va e AHp |a A\.(n
-

p) h^(fl) /(a) /\(n p) h
0(a) ^(a)

and since both /(a), #(a) 0() 6 MOD, (i.e. </>(a) satisfies the condition in Equa-

tion 7.2), we would have that Va A. /(a) = 0(a), which means that / = g (since they

were defined extensionaJly).

We have the main result.

Theorem 7.2.11 The fibration p : p > w-Set defined in Definition 7.2.6, is complete.

Proof: We have objects X,Y tJ-Set, and a morphism </> : X * Y. Consider an object

RX in the fiber px> and another Sy in the fiber py- We shall construct a functor

H^ : %>x
- Pv and establish a bijection

thus demonstrating the adjunction. We shall overload notation a bit and assume that

the ^-indexed collection RX corresponds to a map R : X -> MOD
; hence, the PER

Rx = R( x ). Then we define

using the notation of Definition 7.2.9, considering fl(z) as an object of MOD (via

the embedding Vp). Consider a morphism u : </>*(Sy) > /2jf , consisting of a family

( ur : ^(r)
-

^x}zex- Its image /z(u) : 5y -> n^(.Rx) is the family

[u'y
: 5V

- nr ,-, (y) /Z(a:)
:
[y']

-, / where f(x <t>~
l

(y)) =
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where y' dom(5y ). Wo claim that /i(u) is witnessed by the code q
=

Axyz.(p
- z -

y),

where p is the witness for M. To see this, note that

Vy'dom(5y ).3.y' = \z.(p
. z -

y')
= t

Vxe^-'M-VaelxeXM-a = (p. a .

y') \-RX ux ([y'])

and hence we can claim that t tracks / (we have used A-terms directly instead of

equivalence classes). Looking at the other part of the bijection, given u : SY -* n+(Rx),

consisting of the family uy : Sy
-> nr ^-i (y) #(x) we define i/(t) : ^(5y) -* fl* to

consist of the family

K : SM -* Rt : \y')
~ (uv([j,']))(*)}lX

where y' 6 dom(S^(r )).
We claim that i/(w) is witnessed by the code p =

where q tracks u and r tracks <. To see this, note that

Vx 6 *.Va |x X|.Vy'. e dom(5^(r) ).p a y'

= (g-r-a-y')-a

= ((V(r-a)).y').a

= ((9'c)-y')-a for some e \4>(x) Y\

= f a for some / that tracks u
v ([y'])

and hence the proposition. It is straightforward though tedious to verify that the maps

p. and v are inverses, and that the naturality conditions hold. Likewise, the Beck-

Chevalley can be seen to hold, and we do not labour the details.

Fiberwise finite limits follows easily from the fact that PER has finite limits (cf. The-

orem 7.1.3): the operation of the re-indexing functors being essentially one of pulling

back, they preserve the limits. The details are straightforward and we omit them.

The fibration p has another remarkable property: it has a full and faithful cartesian functor

to the codomain fibration cod : u>-Set^ -* w-Set.

Theorem 7.2.12 ([61, Prop. 4.3.16]) There is a full and faithful cartesian functor $ : p ->

cod, where cod : u>-Set~* > w-Set is the codomain fibration.
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Proof: The action of q on an object RX in the fiber over X may be described as follows.

We define Y as the u>-set given by the disjoint union

lJ ER, with |(*,M) Y\ =
{{fc, n) |

k |* X\,n 6 [p]>

r*

where [p] is the equivalence class of p with respect to the relation Rx . Then we define

Now consider an arrow f : RX -+ Sy in p. The image <(/) is the commuting square

in w-Set shown if Figure 7-1, with the morphism /' : (z,[pl)
"* (/(*)/*([?])) tracked

by the code

\z.(n
- 7T (z), (m-n- TTO(Z)) ?TI(Z))

where n tracks / and m witnesses /. Cartesian-ness follows from the basic pullback

structure of cartesian liftings, and their conservation under the mapping described

above. Fullness and faithfulness are straightforward too and we do not labour the

details.

LLex -n, f Llygr HSv

Figure 7-1:

Finally, we may establish the fact essential to the interpretation of Polymorphic Types

namely the presence of a generic object.

Theorem 7.2.13 The fibration p : p - w-Set defined in Definition 7.2.6, has a generic

object.

Proof: We shall denote the set of all partial equivalence relations (over A of course) by PER.

Consider the u>-set M defined as (PE#,hMo )
where I-MO

= ^ x PE&- The generic

object for the fibration can be easily verified to be the object {/2}/? M *n tne

over MQ.
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Hence, Theorems 7.2.13 and 7.2.11 taken together give us the structure adequate for

interpreting the polymorphic lambda calculus. We may also remark, that since the fibration

p is locally small and has a generic object, it is a small fibration i.e. (equivalent to) the

externalization of an internal category in u;-set. Obviously, the object of objects of this

category is M
,

viz, the set of all PERs. Since our ultimate aim in this chapter is to

structure our category A (of the previous chapter) too as an internal category in u;-set it

behooves us to give a description of it, and we do so in the following proposition (which we

state without proof).

Theorem 7.2.14 The structure M described by the following data, constitutes an internal

category in w-Set.

MO the object of objects is as defined in Theorem 7.2.13.

MI the object of morphisms is defined as ({(XJ,Y) \ (f : X -+ Y) in MOD},hMj >
and

such that n hMj (XJ,Y) & n tracks f.

do the domain map, is defined as do : (X,f,Y) -> X.

d\ the codomain map, is defined as d\ : (X,f,Y) i- Y .

idj^f the. identity map, is defined as id^ : X -
(A',(/J, A').

M the composition map, is defined as M : ((X,f, Y)i(Y,g, Z)) H- (X,gof,Z)

The proof is straightforward and we refer the interested reader to any of the standard works

on the topic. It is easy to see that our fibration p is nothing but the externalization of M
(up to isomorphism).

Proposition 7.2.15 The fibration p : p -> u>-Set is the externalization M of the internal

category M.

Proof: We recall that the objects of the total category (of the externalization) M are pairs

(A,f : A > MO), which are essentially /1-indexed families of PEIls for objects A i*>-

Set which is the same as those of the category p. Morphisms (A, f : A - M )
-

(B,g : B - M
)
are pairs (u,/i) such that u : A -* B in w-Set, h : A -> MI and the

following equations hold.

#o o h = f d\ oh - g o u

Thus, morphisms between a /1-indexed family of PERS, and a fl-indexed family are

essentially ,4-indexed families of PER morphisms {ka : Aa -* u(a)}o,4 with the
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nuance that, since the maj> h is in u-Sct, there is a single code n, such tliat for all

a A and any p \a A\, n -p tracks ka . This corresponds exactly to our definition

of morphisms in the total category p.

Thus the "naive" category PER may be recovered by taking global sections of the internal

category i.e. the fiber over the terminal in u-Set. Moreover, this result taken in conjunction

with Theorem 7.2.12 gives us the following significant fact.

Theorem 7.2.16 The structure M is a full internal sub-category o/u-Set.

Proof: From Theorem 7.2.12 and Theorem 7.2.15, we may verify that </> is a full comprehen-

sion category preserving fibered terminal objects. Also, it is fairly easy to see that </> is

the internal global sections functor. We omit the details.

It also turns out, that when we take the definition of a limit-as-an-adjunction appropri-

ately relativized to this internal category, the "external" construction of the limit in PER

(for uniform families) as discussed in the previous section, turns out to yield the true limit.

In other words, there exists an internal right adjoint II : [Mo * M] M to the internal

diagonal functor A : M -+ [Mo - M], whereM is to be understood as the discrete category

whose object of objects is MO as defined above. In fact, the internal category M turns out

to be strongly complete, as defined in Section 5.2
2

: this means that completeness holds (for

its externalization) in the fibered sense (that is, for families of diagrams of possibly varying

shapes). The proof for that would take as too far afield into the descriptions of internal func-

tors, and internal adjunctions and so forth, and we shall refer the reader to the references

([66,48,4, 36, 34]).

Finally there remains a point that could do with some clarification. In the last section we

saw that in PER, the interpretation of Polymorphic Types was done through the construction

of a right adjoint, and the latter was available as an intersection in the category. Yet, in this

section, the same thing was done through a right adjoint to re-indexing functors, and the

image of this right adjoint viz, I\.+(Rx) ln Theorem 7.2.11 above did not appear too much

like an intersection. Actually, for certain kinds of indexing sets, it turns out that this object

is (isomorphic to) the intersection: these are essentially u>-sets X for which the relation r-%

is the complete cartesian product A x X for instance, the set MO (and its sub-objects). We

shall prove this as it ties together our intuitions regarding "naive" reasoning in PER vis-a-vis

the fibrational reasoning in this section. The result is taken from [48].

2when M is considered as an internal category of the readability topos over \ (cf. next section).
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Proposition 7.2.17 Let (A,\-A )
be an w-set, such that \- A= A x A, and <j> : A -> MOD;

then

w/iene we have confused the distinction between an object ofMOD and one of PER.

Proof: We shall define a map fi : C\a^A fta)
- IIa/i</(a) : [x]

~ f, where / : a ->
[x]

This map is realized by the code k (specific to our combinatory algebra A), since

Va <E 4.Vp |a A|. (k x) p = x /(a)

and hence k x can be taken to realize /. For the other way around, we define a map
v : na6yi<(a) >

(~}aeA <t>(
a

)
'

f -*
[
n '

P] where p is any code in A and n tracks /. This

is well-defined since for any such p, and any a A, we would have that p h^ a, and

hence n p must be in the domain of every 0(a): the image of / then is simply the

equivalence class of (n p) in the intersection, which would not depend on the actual

value of p. This map is tracked by the code \x.(x 0) where the choice of the element

is arbitrary. It is easy to verify that the maps // and v are mutual inverses.

7.3 The Readability Topos

As we have stated, the development of the thesis from this chapter onwards is towards the

embedding of the constructions of the earlier chapters into a categorical model of Intuitionistic

higher-order logic: the ultimate objective being to elucidate the relationship between the

semantics of proof-objects and that of denotations (or provability, in the case of propositions).

We have remarked that there is a loss of information in the transition from the former to the

latter, and it would be insightful to see this transition within an appropriate intuitionistic

universe. The latter is salient to our general project since the A-Types, which we would like

to think of as encoding all the functional information in A-terms, should yield something

akin to a program logic viz. a framework for reasoning about denotational equivalences.

In other words we would like to think of (the denotational spaces of) programs essentially

as (non-standard) sets (with full (standard) function spaces): thus the standard predicate in

denotational semantics, "is less defined than" should be just the subset relation in some non-

standard model of Intuitionistic Set Theory. With this objective, we provide a brief sketch of

the background on Readability Toposes. This exposition is not meant to be either rigorous

or comprehensive for which we would refer the reader to any of the references ([61, 58, 33]),

(from which is gleaned most of the following discussion).
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We shall consider a Topos constructed on the combinatory algebra A. This algebra pro-

vides a model of computation, and we shall construct from it, a set of non-standard proposi-

tions. The essential id<ja, which can be- traced to Scott and Hyland, is to cast the readability

interpretation ([61, pages 86-92]) in the form of a model for intuitionistic propositions: a

proposition (truth-value) is conceived as the set of its realizers, that is, a set of elements

(codes) drawn from the combinatory algebra A (putatively, the representation of the proofs

of the particular proposition). Hence we have a set of non-standard truth values 2
,
which

we may turn into Hcyting prc-algebra through the following definition.

Definition 7.3.1 For p, q C A, we define

p/\q = {(m

p >q = {e|Vn p.e-n 9}

p<q & p-^q^Q

form which it follows that is the bottom clement, and any non-empty p is a top clement.

We shall denote this structure as ft.

This gives us the basic framework in terms of which we may define, for any set X, the set $l
x

of non-standard predicates on A". We structure this set as a Heyting pre-algebra (fl*,r-jr)

through the following operations, noting the nuance in the definition of the order relation

\~x which is uniform rather than pointwise.

Definition 7.3.2 For 0,^ Sl
x we define the following operations

) fl W x
)

^ W*)} ?*

xX

from which it follows that Ax.0 15 a bottom element and \x.P for any P ^ is a top element.

We may define a quantificational structure on the predicates; these are described below and

are a restricted case of a general notion of quantification as adjoints to substitution along

arbitrary maps which are taken to be projections in this case.
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Definition 7.3.3 For
<f> fl

Axl/ we have the operation of quantification defined by the

following rules.

where, we define

1 otherwise

We have the notion of validity (symbolized as |=) which is fundamental to the definition

and study of the Realizability Topos.

Definition 7.3.4 For a predicate <f>
$l
x

,
we say that

<j>
is valid, f= <j>

under the following

condition.

By Definition 7.3.2, we have that

We may now define the Realizability Topos.

Definition 7.3.5 The Realizability Topos is a category ft, with the following constituents.

Objects: An object X = (A,=) is a set X with a map = in Jl
XxX

(which essentially

represents a non-standard equality) satisfying the following conditions.

(symmetry) |= x = y > y = x

(transitivity) (= x = y /\y
= z >x = z

We will write x X (or Ex) for the predicate x = x, and denote the truth-value

Morphisms: A morphism f : (A, =) - {>',=) w an equivalence class o/ functional relations,

where a functional relation <t>
is a map in (l

x * Y
satisfying

(relational) |= 0(z,y) f\*
= x

1

/\ y = y' #*',y')

(strict) |= 0(x, y)
> Ex [\ Ey

(single-valued) |= ^(z,y) /\<t>(x,y') V = if

(total) (= Ex -
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and the equivalence relation ~ on such functional relations is defined as follows.

We shall overload the symbol ft and use it to denote both the Heyting pre-algebra defined

in Definition 7.3.1 as well as UK; object (ft,
<

>) in ft. Wo shall denote an arrow / : X > Y

in ft as
[(/>],

where 4> is a functional relation representing /, and the square brackets denote

the equivalence class of <. For any such an <, we shall denote <(:r,y) as [y = #(z)].

We record the following standard fact omitting its proof, for which we refer the reader to

the references ([33, 37]).

Theorem 7.3.6 The category ft of Definition 7.3.5, is an elementary Topos.

It would not be difficult to anticipate that the sub-object classifier is the object ft. We shall

demonstrate a full embedding of SET into ft
3

.

Proposition 7.3.7 ([33, Prop. 4.2]) There is a full and faithful functor A5 : SET - ft.

Proof: For any set X, we define an object As(X) in ft as follows: As(X) =
(A',=) where,

for x,y X
. f T

=
y]
=

< _

^
otherwise

Any arrow / : X * Y in SET, has as its image under AS, the arrow A5(/) : As(X)

As(Y) represented by the functional relation (we shall use the same letter / for it) for

which

r /
T lf = '<*)

\y
=

/(*)) =
\

,
t

, .

^
\0 otherwise

To see that AS is faithful, suppose there are two arrows /,# : X > y in SET such

that

h [
= /(*)]>[* = *(*)]

=
[y
= /(*)] = T ^ [y

=
^(ar)]

= T

=> !/
= /(^) ^ y = #(*)

and hence / = g. To see that AS is full, consider an arrow
[<j>]

: As(A") > AS(^) in ft.

This gives us an arrow </>
: A' x V ft (in SET of course). We claim that

'Actually there is a lot more to the story here: SET is itself a Topos, and the full embedding claimed here

has a finite-limit preserving left adjoint and thus we have have a geometric morphism from SET to 9? ([33]).
4This is not an internal language statement!
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and this can be seen as follows. Consider y and y' such that <(:r, y) / and <(z, y') ^ 0.

But then we have the internal validity

and since y = y
;

holds exactly in case y is actually identical to y' (from the definition

of the embedding A5 ) we have the proposition. This condition (and totality) yields us

an obvious arrow / : X -> Y in SET, and we can easily see that 4> represents A$(/).

We can describe certain objects of ft in terms of this embedding. The terminal object is

(up to isomorphism) the object A5(15 ) where 1 5 is the terminal object in SET (that is, the

singleton set), ft has a natural numbers object A5(N) where N is the set of natural numbers.

We shall demonstrate now, a full embedding of w-Sets into ft. We define a functor

Aw : u>-Sets -+ ft as follows.

Definition 7.3.8 The action of A^ on objects may be described as follows: Aw : (X,\~x) ->

(X,=) where, for x,x' X
'

\xX\ ifx = x'

otherwise

For an arrow f : (X t \~x)
-*

(Y, l~r )
tracked by a code n, we define a function $ : X x Y > ft

as follows.

1 rt

otherwise

and define Aw(/) as the arrow represented by the functional relation <j>.

Of course, we must show that
</>

is indeed a functional relation.

Lemma 7.3.9 ([61, Lemma 4.4.18]) The predicate <f>
as defined above, is a functional rela-

tion.

Proof: We have to demonstrate the four validities (i.e construct realizers) in the definition

of a functional relation.

Relational: We note that [x
=

x'] / ^ [y
=

y'] implies that x = x' and y = y', and

hence <j>(x,y)
-

<t>(x',y'}. Hence the relationality predicate is realized by the code

AX.TTO(X).

Strict: From the definition of <j>, we can see that if <(z, y) is non-empty, then the first

component of any of its elements give us a realizer for x = x, and the second for

y = y. Hence the strictness predicate is realized by the code for identity.
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Single-valued: We note that if <(x,y) f\<j>(x,y') / then by the definition of <f> we

would have that y = /(x) =
y'. Hence the predicate is realized by the code

Total: Referring to the definition of existential quantification, we have that

(3y.#x,y))(x) =
|J

Hence, the totality predicate would be realized by the code Ax.(x,n x).

Theorem 7.3.10 ([61, Lemma 4.4.18]) There is a full and faithful Aw : w-Sets <-+ ft.

Proof: Consider objects (A",=),(y,=) ft, which are in the image of u-sets (A",f-jc),(1/ '~K)

under the action of AU,, and an arrow / =
[<] : (A", =) (y, =). Let p be a realizer for

the totality predicate: that is

Vx A.Vs<E |z X|.p-n =
(/,*), where / G y, Jk^>(a:,y)

for some y 6 V. We define a map /' : (X,\~x) > (V, hy) as follows.

/' : x -+ y where 3!y K.V^ |* X\. x (p s) e Ey (7.3)

We must prove that such a y is unique. Consider some other s' |x A"]; let us

have some other y
;

6 Y, such that p s' = (/

/

,A:
/

>
with /' 6 y

; and fc
;

e <j>(x,y')', let

p 5 = (/,/:) for 5 of Equation 7.3. Let the realizer for the single-valuedness predicate

be r. Then we have that r (k,k
f

) [y
=

y'] which means that [y
=

y'] ^ or y = y'.

Hence, the embedding is full.

As for faithfulness, consider maps f,g : (A^h^) > (y,hy>, such that Aw(/) = AM(g) =

[</>]
where < is a functional relation on X x Y. By the definition of AU,, we would have

that

{(p,m-p)|p |x 6 X\} y = g(x)

where / is tracked by n and g by n. This tells us that Vx.y = f(x) iff y = </(x), and

hence / = g.
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As we can see from Proposition 7.3.7 and Theorem 7.3.10, the Readability Topos is a large

object: it contains both the category of Sets which is essentially the universe of classical

mathematics, and the u>-Sets which is itself a larger universe, and in which a fair amount of

constructive math can be done, (it is what is known as a quasi-topo$\ an excellent reference is

[90]). The theory of the Readability Topos, and the general theory of Toposes is an extensive

field of research itself, and much of the discussion is beyond the ambit of our study. What

we are interested in primarily, is to see that the category of partial equivalence relations is

equivalent to an internal category within the Readability Topos, and is sufficiently complete

to be able to model higher-order Type theories. We have already seen that the category of

PftRs is a full internal sub-category in u>-Sets. Since u-Sets embeds into 5?, we would like to

think that the PERs would be a full internal sub-category in the latter too, and with all the

completeness that it had in u>-Sets. Since the structure of a full internal sub-category and

its completeness as one, depends on the (locally) cartesian closed structure of the ambient

category, we would be able to assert the proposition only if the embedding AU, preserved

the locally cartesian closed structure of its domain. This claim and its demonstration is so

well-known by now, that we would be justified in describing it as "folklore." The argument

is by no means trivial, and is usually derived from a general theory of what are known as

j-operators in any Topos. A discussion of this theory would be a digression from the logical

development of our thesis, and we would merely sketch a broad picture, leaving the details

to the interest of the reader and the standard references on the topic ([33, 34, 36, 42]).

The essential idea is to characterize the objects of $ in the image of Aw ,
in the internal

logic. This is not difficult and was done by Hyland in his pioneering paper ([33]).

Definition 7.3.11 An object (X, =) ft is said to be -.-.-separated, if the following condition

holds.

t=Vx,x'tX.^(x = x')*(x = x
t

)

This is not the only characterization of the class, nor the primary one (cf. [33, 5, page 182]).

The class has a number of interesting properties among which we may mention the following.

The sub-object of a -i-i-separated object is -.-.-separated.

The full-subcategory of -i-i-separated objects is cartesian closed.

The full-subcategory of -.-.-separated objects is locally cartesian closed.

The most significant fact from our point of view is the following.
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Theorem 7.3.12 (f33, Prop. 6.1][61, Prop.4.5.21]) An object of 8 is -.-.-separated iff it is

isomorphic to one of the form (A", =) satisfying

that is, to (the image of) an u-set.

Proof: It is easy to sec the "if" part. % the definition of AU,, we know that \x = x'\ ^

exactly when x = x' . Moreover it is known that in the Topos, if a formula 4> is realizable,

then any code realizes -1-1^. Hence the proposition. For the "only if part, it can be

shown that if an object is -^-.-separated then it is a sub-object of A$(X) for some set

X; and any such object would be in the required form.

Finally we record the fact most significant for our purpose.

Theorem 7.3.13 The full sub-category comprising the separated objects is locally cartesian

closed, and the embedding A^ preserves the locally cartesian closed structure of the latter.

Proof: We refer the reader to: [33, 5,6,pages 181-188] and [34].

Some more labour is needed to prove that the internal category M in w-Set is a full internal

sub-category AW(M) within 9R, and possessing the relevant completeness structure: we refer

the reader to the references ([34, 36, 66]). We have alternate characterizations of the image of

PER and of that of M in ft. The former is equivalent to the category of "effective objects,"

which is essentially a quotient of a closed sub-object of A, by a closed equivalence relation

(for the precise meaning of this statement, we refer the reader to [34], [33] and [61], and for

other characterizations, to [36] and [66]). This (sub-) category of ft is known as the category

of modest sets.

7.4 A-Types as Modest Sets

In this chapter, we have have presented so far an account of certain "standard" constructions

within the Realizability Topos. The culmination of this account has been the demonstration

of a full internal subcategory namely the Modest Sets, which are essentially the (internal

version of the) partial equivalence relations on the underlying combinatory algebra. In this

last section we shall place our own constructions specifically, the full internal category A
that we have constructed in the previous chapter within the framework of the Modest Sets.

The reader would already have seen that the Basic Types in our system (we shall describe
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them as A-Types too) are, in fact partial equivalence relations namely, restrictions of the

relation ~ to their respective domains. This allows us to embed them in the category of

modest sets, and explore their properties in this context. The constructions are carried out ,

relative to the u;-Sets, since the Theorem 7.3.13 allows us to "lift" the results to the Topos

# (through the embedding Aw that preserves the LCC structure of the domain). We shall

connect the earlier construction specifically the fibration p : A -> B, to the current one,

through a change-of base situation.

We shall denote the object of objects and the object of inorphiBins of the internal category

A as Ao and AI respectively. We have the following simple result.

Proposition 7.4.1 The small category A w a full sub-category of the category PER.

Proof: A more precise statement of this proposition is that the fiber (A)i (over the terminal

object IQ of B) is a full sub-category of PER (note that the fibration A is (isomorphic

to) the externalization of A; cf. Remark 6.2.24). In this form, the proposition is almost

obvious. Every object of the former (i.e. every Basic Type) is a partial equivalence

relation namely ~ restricted to an appropriate domain. On the other hand, every

A-morphism a >
/? is the ~

equivalence class [/] of a A-term / that tracks the cor-

responding PER-inorphisrn. Conversely, every PER-morphism tracked by a code /,

corresponds to a A-morphism tracked by the set of codes in [/]~. The only point to

note is that the representation of any morphism (in terms of its realizers) in the two

categories would, in general, differ: for (A)i ,
the relevant equivalence relation (on the

function space) is ~ in every instance, while for PER, it depends on the PERs a and

/? (cf. Definition 7.1.2).

We have noted in the previous chapter that B is a sub-category of u>-Sets (Proposi-

tion 6.2.2). In fact it is easy to see that pullbacks, and in general, the relatively cartesian

closed structure of the former is preserved by the embedding (which we would denote as t).

We note the fact formally, omitting the easy proof.

Lemma 7.4.2 The embedding i : B *-> u>-Set preserves the display map structure, and the

relatively cartesian closure of its domain (with respect to the former).

We can also see that this embedding exhibits A as an internal category in w-Sets. We record

the fact below.

Proposition 7.4.3 There is an internal category i(A) mu>-Sets, for which the relevant sub-

structures are the images, under i of the corresponding sub-structures of the internal category

A n B.
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Proof: It is straightforward to verify that all the structures and conditions for an internal

sub-category in B are conserved by the embedding (using Lemma 7.4.2).

Thus we may re-formulate Proposition 7.4.1 as stating that the internal category A is (in-

ternally) a full sub-category of the internal category of modest sets M; we leave the fairly

simple proof to the reader.

Proposition 7.4.4 The internal category A is (internally) a full sub-category of the internal

category of modest sets M.

Thus, we have a monic t : t(A )
* MO, which we shall invoke in the results below.

We have already seen (in Chapter 6) that A is a full internal sub-category of B. The

significant point is that i(A) is a full internal sub-category of w-Set; this is not as trivially

established as it may appear and we prove first, two subsidiary results. In the sequel, we

shall suppress the notation t(-) for objects in a;- Sets in the image of t, whenever the fact is

clear from the context.

We shall establish the chango-of-baso situation between fibration A and the cxternalixation

Z!WA)), depicted in Figure 7-2; let AJ be the functor given by:

I
Q = {^xlre^ l

~4 (0i a : > AO)

\ / = (M/*}xe *-> (it,/:0-Ai)

where a is as given in the proof of Theorem 6.2.19; and / : x H+ fx is tracked by the code

Xn.fn where / is the realizer of the family / (cf. Proposition 6.2.25).

Lemma 7.4.5 The square indicated in Figure 7-2 (with sides K,, [t(A)J; andp, i) is a change-

of-base situation.

Proof: We shall use the fact that A = XA)- We show that the square indicated is

a 2-pullback. The vertex of the 2-pullback of [t(A)j along t would be denoted as

B X u/-Set ZX l(A)), and abbreviated as K. Consider any object 6 B; an object

in the fiber Kb can be seen to be of the form (&,/ : t(6) -* t(A )) and this corre-

sponds exactly to the (unique) object {&,/ : 6 -* Ao) in the fiber A& (on account of

the embedding). Similarly, any object (6,/ : 6 -> A
)
in the fiber A&, would correspond

to the unique object {&,*(/) : *(&)
-* K^o)) in the fiber K&. Now consider any map

h : (b,f : i(b)
-

t(A )>
-+ (c,g : i(c) -> t(A )> in K (6,c B): this would consist of a

pair (w,/i
7

)
with u : b -* c, and h' : b -* AI, and be over the map u (eliding the t nota-

tion). Now h
1

yields a ^-indexed family of maps in small category A (of the appropriate

domains and co-domains), which is precisely a A morphism between the corresponding
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objects in the fibers over 6 and c respectively. Conversely, any A morphism h over the

B-morphisin u corresponds to an 6-indexed family of maps of the small category A (i.e.,

to a morphism h' : b -> A!) and hence to an unique K-morphism t(h') over t(u). Hence

K is equivalent to A, and hence the proposition.

w-Sef

w-Set"

LIWA))

EWA))

cod

MA)]

w-Sct

w-Set

Figure 7-2: Relationships.

In the next result we demonstrate that the internal global sections functor ]J(t(A)) factors

through the functor
</>

: p - u-Set^ of Theorem 7.2.12. The situation is illustrated in the

second diagram of Figure 7-2.

Theorem 7.4.6 There is a full, cartesian functor C :
' p and we have U(*(A)) =

Proof: We shall implicitly make use of the equivalence E(M )
- P- We Prove first the exi8'

tence of . Any object (A,a:A-*> A
) (we have suppressed the t as before) in ((A))

corresponds, from Proposition 7.4.1 above, to a map f o a : A -* M
,
and hence to the

object [corresponding to the ^-indexed family of PERs given by] o a; we denote the

^-indexed family of PERs as l(a) and set C : (A, a : A - A
>

-* /(o). Similarly, from

Proposition 7.4.1 above, a morphism h : (A, a : A -> A >
-> (B,b : B -> A

) given as the

pair (u : A -> B,h' : A -* AI) corresponds to an /1-indexed family of PER-morphisms

(realized by the code Xx.hx, where h tracks /i'); we denote it by t(h') (with the ap-

propriate domains and co-domains) and we may set C : h *-> t(h'). Fullness is easy to

see: any map / : t(a]
-

t(b) in p, is a /l-indexed family of PER-morphisms (with
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appropriate domains and co-domains) and corresponds to an unique map / : A * Aj

(once again by Proposition 7.4.1), tracked (essentially) by Ax./x, where / realizes the

family /. We can easily verify that the relevant equations (for a morphism in the ex-

ternalization) hold for /', and thus /' may be taken to the morphism in (t(A)) which

is mapped by C to /.

It is a bit more difficult to see that is cartesian. We refer to Figure 7-3 for the reason-

ing. Consider a cartesian morphism Vi : (>4,a : A * AO) > (B,b : B AO) given as the

X

Figure 7-3: C is cartesian.

pair (u : A B,h' : A -> AI), in (t(A)). We take its image in u;-Set~* (composing

C with <) and this is the commuting square shown on the left u o ira = ir^ o h with

the map h obtained from l(h') as characterized above. We shall claim that i(h') is

cartesian. Consider any map m : X * ^(6) above u: its image under
(f>

is the com-

muting square shown in the diagram at the left
(TTJ,

o m = u o n). Now pulling back

n along u o n we have the following situation: we have morphisms \d^ : X > X and

m : X * 6, with TT<,
o m = 16% o u o ri, and thus, a mediating morphism fj,

: X * Y .

Now the morphism TT(
: Y 6 yields a corresponding morphism TrJ

in p (</> is full and

faithful); we would also note that Y corresponds to an object (X ,(6 o u o n) : X AO)

in 2I(t(A)) (in the fiber over X) and hence
?rj corresponds to a morphism let us

denote it as k in (
l(A)), with co-domain (B,6 : B > A

). Since h is cartesian, we

have an unique morphism q (above n) such that k h o q. Taking the image of this

system under <j>o we have the situation shown in the figure to the right, with
?rj

= hoq

(q being the image of q). Now we have the following identities:

7To O q O
/I

= 71 O 7T O
ft

= no idj
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hence, this tells us that the p-morphism corresponding to q o
/i is above the identity

id,t (fullness of
</> invoked here); then again

ho (JO /I
=

Tf'jO/Z

= m

and hence, it follows that for an arbitrary m considered as above, there is an unique

morphism (given as the p-morphism corresponding to q o n) above the identity id^,

such that m factors through t(h'}, by this unique morphism. Hence we may assert that

t(h') is cartesian, and that is a cartesian functor.

It's not difficult to see the commutation IJ(t(A)) = <. For any object (A, a : A - A ),

the image under JJWA)) is obtained as the the pullback of the generic family p : X -+ A

obtained as given in Figure 5-4, (with the category M replaced with A) along a. The

reader may easily verify that this is isomorphic to the image under </> of the ^-indexed

family corresponding to the map to a or in other words, to the map 7r a in Figure 7-3.

On the other hand, the image of a morphism h : (A, a : A > A
) (#,& : B * AO)

given as the pair (u : A > B, h
1

: A * AI) is given as the image of the generic morphism

s (in the context of Figure 5-4) under the action of the pullback functor derived from

h'. It is straightforward to verify that this is (isomorphic to) the square shown on the

left in Figure 7-3 (u o 7ra =
TT^, o h) which is obtained under the action of <j>

o on h.

Hence the proposition.

This allows us to assert the next results quite easily.

Theorem 7.4.7 The internal category t(A) is a full internal sub-category o/u;-Sets.

Proof: We have to establish that LI((A)) is a full comprehension category. But we know

already that : <p
-+ u-Set~* is a full comprehension category, and that is a full

cartesian functor, and Ll(HA)) =
</>

o . Moreover, preservation of fibered terminal

objects is easy: it follows from the fact that the A-Type /[ft], which is an internal

terminal object of the category A, is isomorphic to the terminal object 1 of PER (and

thus of the internal category M) described in Theorem 7.1.3. Hence the proposition.

Finally, we shall claim that z(A) is a full internal relatively cartesian closed sub-category

of w-Sets, relative to the full sub-category B. To establish this we use the following lemma.



146 CHAPTER 7. THE REALIZAB1UTY TOPOS

Lemma 7.4.8 If J is the embedding B~^ -> w-Set"^, then

>7o.jJ

where K, is as indicated in Figure 7-2.

Proof: As we have seen above, the action of both IJ(A) and U(*(A)) have the same char-

acterization: on any object (/I, a : A - A
)

in A (using the equivalence A 2 (A))

the former yields the morphism TTO : a - A in B (and hence in u>-Set), obtained as

described in the proof of Theorem 7.4.6 above. This is exactly image of (A, a : A > A
)

under LI(z(A)) as argued above. The same consideration holds for morphisms:

the image of a morphism h : (A, a : A > A
>
-

(B,b : B -* A
) given as the pair

(u : A > B,h' : A -> AI) is given as the image of the generic morphism s (in the con-

text of Figure 5-4) under the action of the pullback functor derived from h' . As argued

in the proof of Theorem 7.4.6 above, this is (isomorphic to) the commuting square (in

B, and hence in o;-Set) shown on the left in Figure 7-3 (UOTTO = 71^0/1), and once again

this is precisely the rase for the image under LI(*(A)). Hence the proposition.

We have finally the main result.

Theorem 7.4.9 t(A) is a full internal relatively cartesian closed sub-category of u;-Sets,

relative to the sub-category B.

Proof: Follows immediately from Lemma 7.4.8: we have already demonstrated that U(A)

(which is but the comprehension category P of Chapter 6) is a closed comprehension cat-

egory, and this is preserved by the embedding J (the reader might like to step through

the details involved in this verification). The change-of base situation of Figure 7-2

has already been established in Lemma 7.4.5 above. Preservation of fibered terminal

objects follows on the same consideration as suggested in the proof of Theorem 7.4.7.

This brings to a close the first part of our effort to see the category of A-Types structured

as a full internal sub-category within the Readability Topos
5

. In the next chapter we shall see

that the small category A admits the notion of a partial order, and hence may be completed

into domains. However, we can already notice an interesting fact: the completeness properties

of our category get progressively weaker in the process of the embedding. While A had an

internal relative cartesian closure in B it remains merely so, relative to the latter when

5
Though we have demonstrated the relevant conditions for the case of u>-Sets, by virtue of Theorem 7.3.13,

this structure is preserved by the embedding into 5R.
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embedded into u>-Set. In fact wo shall note this process throughout the next chapter: as we

move from the semantics of proof towards that of denotation, the corresponding structures

lose much of their Type-theoretic completeness, and admit only domain theoretic properties.

This is reminiscent to some extent of the parallel situation for propositions whereby in a

Topos, all proofs are collapsed into a single arrow. We shall have occasion to comment on

this in the sequel.



Chapter 8

Internal Domain Theory

This final chapter is concerned with the relation between the Heyting-semantics of A-terms

the semantics of proofs (or proof-objects, to be precise) and the traditional semantics of

the denotational kind. We have already mentioned that the development of our thesis has

been oriented along a course parallel to that of a Heyting-semantics for propositions. The

epitome of this latter development is, as we know, a constructive theory of Types the

simplest example of which is perhaps Girard's System F, or the (second-order) polymorphic

A-Calculus. We have remarked that the move from proofs (in fact, any representation of

intensional information) to denotations would in general entail a loss of information. In the

context of propositions, this is easily seen: in a categorical model for intuitionistic higher-

order logic which is an elementary topos the proofs are collapsed into a single morphism,

that simply tokens provability. In other words, the object of propositions (truth values) in a

topos is a Heyting algebra object, and the Type structure of constructive proofs is lost.

The hiatus between denotations and proofs shows itself especially with respect to the

denotational semantics of the Types themselves. We have remarked earlier that such a se-

mantics, in terms of an adequately complete full sub-category of the classical (or boolean)

topos of Sets is ruled out on cardinality considerations ([65]). The resolution, as we have

remarked earlier, was to interpret the theory in an elementary topos which had an intu-

itionistic internal logic. This was done by A. M. Pitts (through a generalization of an earlier

construction of D. S. Scott on cartesian closed categories with a reflexive object; cf. [74]),

by embedding a Hyperdoctrine model of the polymorphic A-Calculus into its presheaf topos

through the Yoneda functor ([62]). The presheaf topos was shown to contain a full internal

sub-category, closed under certain limits that could interpret the Type-theoretic operations,

and hence could interpret the object of Types. The constructive information in the proofs

could thus be conserved by embedding the category of Types as an adequately complete
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internal sub-category of the classifying topos. The remarkable conceptual gain in this IH

that the Types could now be understood as essentially sets and reasoned about within a full

intuitionistic logic.

There was a more subtle aspect to this problem: If the Type theory was rich enough to

allow the construction of recursive terms (and Types) as would be the case for (the Curry-

Howard Types of) certain logical theories with induction principles (cf. [52, 13]) the seman-

tics would have a natural domain-theoretic formulation. Domains have fix-points, however,

and it had been known for some time that fix-points do not sit well inside a topos (more specif-

ically, any cartesian closed category with equalizers): the objects degenerate ([32]). This was

in fact the reason why display map categories were formulated in the first place-as the gen-

eralization of locally cartesian closed categories ([85]). The resolution of this problem is still

an active field of research: the general principle is to construct adequately complete internal

categories of order-theoretic objects (which could interpret recursive constructs as fix-points)

in a topos and this may be done in more ways than one ([1, 22, 13, 3, 58, 59, 86, 35, 68]).

A particularly elegant method is to induce the order synthetically, on the basis of recursively

enumerable sub-objects classified by an object of computable truth-values ([35, 68, 86, 58]).

This has the virtue of intrinsically relating general recursion theory and its denotational se-

mantics in a single foundational framework and without any ad hoc notion either of coding

or of order a conceptual possibility that had been unrealized since Scott and Strachey's first

attempts towards a semantics of computable functions ([71, 75]).

In this chapter, we would attempt to formalize our intuitions regarding the constitution

of the denotations of terms from the sets of their proof-objects. We would see that the

problems and their resolutions, discussed above-whereby the constructive information in the

proofs is conserved within suitable internal categories have a fairly close correspondence

with the situation in the case of A- terms. We would see that the proof-objects admit an

order-theoretic structure and denotational semantics may be formulated through a process

of completion (into dcpos). The resulting collection of objects constitute an internal category

of dcpos, and moreover one that may be conceived as a category of synthetic objects. The

analogy with propositions would be complete if this object of denotations which is the object

of truth-values in the former case could be shown to have analogous properties: specifically,

one might be led to expect that since the object of truth-values is a Heyting-algebra object,

the corresponding denotational objects for the A-terms would, at the least, be (internally)

cartesian closed.

The denotational semantics of programs is based, traditionally, on the notion of a Domain.

There are variants of this notion, but the essential requirements and the structure that fulfills
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them are reasonably clear. The most important condition is the ability to give a semantics to

recursive functions, and the structure that can do this economically is the directed complete

partial order, with a least element (abbreviated cpo hereafter; cf. [64]). The requirement of

directed completion comes from another (computational) direction: denotations of A-terms is

epitomized in the set of its approximate normal forms (essentially, our residues); such a set is

always directed (cf. Lemma 2.2.6) and its least upper bound corresponds to the Bohm tree of

the A-tcrm in question ([5, Chapter 14 3]). The category of epos (and continuous functions)

has another important virtue: it is cartesian closed, (and closed under a variety of other Type

operations) and hence sustains an interpretation of a simply typed programming system.

Most significantly, it is possible to construct in this category, objects that are isomorphic to

their function space, and hence can interpret the untyped A-calculus ([80]). Thus, the notion

of a cpo evidently furnishes a general idea of a domain for denotational semantics. This

relatively simple notion may be refined in several ways. One is to endow it with the additional

property of algebraicity: essentially, the idea of equipping a cpo with a base of compact

elements, and such that any element is the supremum of the set of compact elements below

it ([73, 29]). The resulting class of objects are known as algebraic complete partial orders, or

Domains. These objects have significant ad vantages over the epos: when considered as spaces,

their topology is determined by their lattice structure, and the topology of certain objects

constructed from of them through Type- theoretic operations relates simply to the topologies

of the initial objects ([72]). Hence, the topological construction of spaces homeomorphic to

their function space is greatly simplified. The category of Domains (and continuous maps) is,

however not cartesian closed, so it is usual to consider maximal sub-categories which are. Two

such sub-categories are well known: the class of the 5F/>
-objects, and that of the L-domains

([79, 43]). The former is known to be complete under most commonly used Type- theoretic

operations, including simple non-deterministic constructs (power-domains; cf. [63]).

Thus, we shall complete the analogy between propositions and programs (closed A-terms)

by structuring our Types as Domains. We have already remarked the existence of an (partial)

order on the A-Types. The move towards denotations is essentially one of completing this

incipient order structure under directed joins. The idea we have is essentially this: in the case

of propositions and in the transition to their denotations (truth-values) in the context of an

elementary Topos, all proofs were collapsed into a single arrow that tokened entailment; in the

case of programs, we will collect the information in the residues into the least upper bounds of

directed sets. Thus, we shall essentially complete the A-Types by closure under the least upper

bounds of directed sets, suitably defined. Remarkably, under a certain constraint on these

directed sets (essentially, that they be recursively enumerable) the resulting class of directed
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complete parliaJ orders is still contained within the sub-category of modest sets. These

objects sustain an interpretation of A terms as directed completions of their approximations

(proof-objects). They are demonstrated to be dcpos (some of them do not posses a least

clement) and most significantly, synthetic objects. By this we mean that the order defined

extrinsic-ally on the A-Types is shown to coincide with an intrinsic notion of order derived

from the structure of what may be conceptualized as recursively enumerable sub-objects. This

demonstration is achieved through methods recently conceived in the study of what are called

Synthetic Domains. Moreover, the internal category of pre-domains is demonstrated to be s

sub-category of a certain canonical (internal) category of objects known as the replete objects

([35, 86]).

With this rather long preamble, which in our view was important in order to understand

the motivation behind the constructions in this chapter, we turn to the concept of internal

Domains.

8.1 An Internal Category of Domains

We shall tackle first, the question of obtaining from the (internal) category of A-Types, a

category of objects that have most of the standard Domain-theoretic properties. We have

already suggested, though never formally, that any A-Type a admits a notion of an ordering.

This partial order is essentially the Hblini tree 7/-substimption order ([5, Chapter 10 3 & 4,

Chapter 19 2]), well-known in the theory of separability and the local structure analysis of

A-models. After establishing this order, we apply a form of the directed-completion technique

(suitably modified for the internal logic) to obtain a class of what may be be described as

^-directed complete partial orders (abbreviated as w-dcpos): these have least upper bounds

of recursively enumerable directed sets, and in particular, least upper bounds of w-chains. In

this section, the constructions will have a "naive" flavor meaning thereby, that they would

be straightforward translations of "external" constructions into the internal structure of the

Rcalizability Topos. In the next section, we shall reformulate them in "synthetic" terms.

We review a few concepts from the theory of Bohm Trees and Solvability. The set of

all Bohm-likc trees would be denoted by the symbol PT. The Bohm tree of any A-term x

would be denoted by BT(x). A fundamental relation among such trees is the relation of

^expansion: denoted by the symbol <, it is essentially the transfinite transitive closure of

the operation of making a single ;/-expansion at any node. For a comprehensive account of

the operation and its properties, we refer the reader to [5, Chapter 10 2].

Definition 8.1.1 For Hohm-like trees m,n, we define the binary relation m < n, and then
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by correspondence, for \-terms x,y, by the following equations.

m-<n <=> 3m', n' BT. m <, m'/\n < n'/\m' C n'

x X y^ => T(x) X BT(y)

It follows easily that the relation X is a pre-order on both B and A. The corresponding partial

order is defined in the usual way.

Definition 8.1.2 For m,n #T, we have the relation ~ defined as follows.

m ~ n <$=> m X n^n X m

7Vie re/afton Ci: is defined on A-terms on Me 6asts of the corresponding relation on the Bohm

trees, as before.

We have the easy conclusion: the relation ~ is an equivalence on both B and A. We shall

also be using the Bohm tree order C on the set of A-terms; that is

x C y <==> BT(x) C BT(y)

for ar,y 6 A. For a set of A-terms X, if there exists a A-term x such that

BT(x) = \J{BT(x)\xX}

then we consider that the least upper bound of the set X in the C order exists, and we write

* = U-V.

We have the important and well-known result in the theory of Solvability, which we state

below for reference. For the proof, which is by no means trivial, the reader is referred to [5,

Chapter 19 2].

Proposition 8.1.3 The following equivalences obtain:

x~y <=> VC[-]. (C[x] is solvable & C[y] is solvable)

x < y <=j> VC[-]. (C[x] is solvable => C[y] is solvable)

where x,y are A-terms.

Thus, the relation ~ defined in Definition 8.1.2 and that used earlier in Chapter 6 for the

construction of the proof-objects, coincide. With these preliminaries, we can define the partial

order on the modest set /[a] for any Basic Type [a]. For any element x of the underlying

combinatory algebra A (which is itself an equivalence class with respect to the /?-cqui valence),
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we denote by [x], the equivalence cla*s of x with respect to the relation ~. Note that the

relation X on A-terms is compatible with /^-equivalence: /.c. for

m = m' l\ n = n /\ m X n & in' X n'

and also (obviously) the relation ~ contains the relation =
. For x,y A, we shall abuse

notation and write x < y to mean that for any m and n 6 j/, m X n; and generally

confuse terms with their /^-equivalence classes.

Definition 8.1.4 For any [aj AO, we define the binary relation X on f[a] as follows.

This is obviously a partial order, and hence, any Basic Type denotes a partially ordered set.

Also, from Proposition 8.1.3 we have the following.

Proposition 8.1.5 For any [a] A
,
and [x], [y] f[a], we have

[x]
X

[y] <=> VC[-].(C[z] is solvable =4> C[y] w solvable)

Proof: Immediate, from Proposition 8.1.3.

The considerations which led up to the characterization of the partial order X can be

cast in an appropriate internal form, whereby we have the sub-object X > + H^. for any a

that is (the denotation of) a Basic Type. Thus, the internal category A may be structured

as an internal category of poscls in the Realizability Topos. In much of the subsequent

constructions, we would argue in the standard "external" universe (keeping the reasoning

sufficiently constructive), and then indicate the points at which they could be internalized.

From this category of poscts, we may obtain an equivalent category of internal domain-

theoretic objects by an appropriate kind of completion. The standard ideal completion does

not appear to be suitable since we would want the resulting category of domains to be an

internal sub-category of the modest sets: arbitrary ideals (or directed sets) would not admit

of disjoint sets of realizcrs. On the other hand, recursively enumerable directed sets (in a sense

to be made precise) would be more suitable candidates. We have the following formulation,

wherein the symbol [o] would always refer to an expression in the set of Basic Types, unless

otherwise stated.

Definition 8.1.6 A subset \ of j[n] is called u -directed iff there is a recursively enumerable

set x such that

x = {!*]!*}

with x directed in the C order.
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Thus, an undirected set is directed in the X order. We shall say that is the presentation

of the undirected set x- The precise reason for requiring that the presentation be recursively

enumerable is as follows: it is well known that the the poset of Bohm-like trees, (&T,C) is

an algebraic cpo. Hence the least upper bound of any ideal, such as \ exists in B\ however,

it might not be the Bohm tree of any A-tcrm. The condition for this to be so is also known

and we record it for reference.

Theorem 8.1.7 ([5, Theorem 10.1.23]) The necessary and sufficient condition for a Bohm-

like tree A to be the Bohm tree of a term, is that the set of variables free in A be finite,

and that A, considered as a function on the set of finite sequences of natural numbers, be

recursive.

Thus, if x is a recursively enumerable set of closed terms, its least upper bound would satisfy

the conditions of the Theorem.

Proposition 8.1.8 The least upper bound of the Bohm trees of any recursively enumerable

directed set of closed terms (in the partial order C.) is the Bohm tree of a X-term.

Proof: It is quite straightforward to see that there is a recursive function that computes the

label at each node of the lub: if the node occurs at a depth fc, it enumerates successively

the Bohm trees of the terms up to a depth k and it does so in the standard interleaving

manner, that is (informally):

2 steps in the computation of the tree of term

1 step in that of the tree of term 1

3 steps in that of the tree of term

2 steps in that of the tree of term 1

1 step in that of the tree of term 2

4 steps in that of the tree of term

3 steps in that of the tree of term 1

2 steps in that of the tree of term 2

1 step in that of the tree of term 3

and so on and till it hits the first tree that has a value for the label of the node. This

must be the label for the node in the lub, since the set is directed. Such a function is

(Turing) computable, and hence must be recursive. Also since all the terms in the set

are closed, the condition on free variables is trivially satisfied.

This result allows us to define the least upper bound of undirected subsets.
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Definition 8.1.9 for any ^-directed subset \ of some object in f[], t/;r define the least

upper bound as [x] where

The preceding constructions give us the means by which we may ^-complete the Types

and Orders, by adding to them, the least upper bounds of undirected subsets. The idea is

stated formally.

Definition 8.1.10 For any set X =
/[a], we define the ^-completion of X, denoted as

ft(X), as follows:

= {[x]\3X CX. X ?9/\X is ^-directed f\x = x}

We can easily see that X C $l(X) and that ft(Q(X)) = ft(X). The final idea that we borrow

from the theory of Bohm trees is the following, which we state without proof (which may be

looked up in the reference cited).

Theorem 8.1.11 ([5, Corollary 14.3.21]) For any \- context C[] t
the map defined by the term

\x.C[x] on A, is continuous with respect to the order C.

This is an extremely significant and useful result, and will underlie many of the propositions

in the sequel.

From this process of completion we can proceed to define the internal category of domains,

for which we shall use the symbol L.

Definition 8.1.12 The internal category L in u>-Set is defined as follows:

LQ: The object of objects is given as the u-sct:

A }

(where A is the object of objects of the internal category AJ with the readability re-

lation: n h / & n ~
II, for any I LO- Note that this gives us a isomorphism

ft(.) : AO Lo : [a]
H+ {[o],J!(#[a])>. We shall suppress this isomorphism in the

sequel, whenever its clan from the context.

LI: The object of morphisms is given as LI = A\ where AI is the object of morphisms of the

internal category A.

The rest of the components, viz., the domain and co-domain maps, and the internal identity

and composition are isomorphic to the corresponding morphisms for the internal category A.
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The relevant components of the internal categories L and A. being isomorphic, it follows

immediately that the former satisfies the conditions for being an internal category. It is also

evident that LQ is a sub-object of Af
;
the object of object of the internal category of modest

sets, and in fact that there is a internal inclusion L - M; however, it is also clear that the

former is not a full internal sub-category. In the sequel, we shall use the fact that L is an

internal sub-category of M.

We state two lemmas that are important for verifying that the category L is internally

cartesian closed. For A = [a] and B =
[f3]

in AQ, we shall use the symbols A x B and A => B

for the expressions [Ex : a.
(3] and [Ux : a.

ft] in AQ.

Lemma 8.1.13 For objects A =
[a], B =

[/?]
A

,
we may assert that

where the latter occurrence of x denotes the cartesian product in MOD.

Proof: Consider any element [(0,6)] &(f(A x B)): as may be easily seen, for any such

element, there would exist a undirected set C =
{[(a t ,6 t )]| * /, [a,] f(A), [6,] G

/(/?)}, for some indexing set /, such that a = U/{ai}i/ anc^ & = U/{&t}e/- Since the

sets {a,}, / and {6i} te/, are undirected subsets of f(A) and f(B) respectively, we may

assert that a G il(f(A)) and b Sl(f(B))\ hence [(a, b)} fl(f(A)) x ft(/(#)).

On the other hand, it's not difficult to see that any clement otll(f(A)) x il(f(B)) is of

the form [(a, 6)] with [a] to(f(A)) and [6] Sl(f(B)). We would thus have indexing

sets /, J such that a = U/{ at}te/ auc^ & = LMMjeJ* where the sets {[a,] |
i /} and

{[bj] | j /} are ^-directed in (A) and (B] respectively. This gives us the following

(double) lub in il((A x B)): namely, U/ Uj{[(ai>^j)]}l tne relevant sets may be seen

to be undirected in (A x B) and thus the least upper bound exists in tl(f(A x B))\

and hence [(o,6G tt(f(A x B)).

Lemma 8.1.14 For objects A =
[a], 13 =

\fl] 6 A
, every clement [f] ll(f(A => B)) tracks

a morphism tt(f(A)) -> to(f(B)) (in MOD).

Proof: Consider a general element [/] l(f(A => B)), given by the condition / = LK/, 1
1

I, ft f(A => B), for some indexing set / (and the relevant set being undirected). For

a general element [a] ll(f(A) given by the condition a =
LJ{rt; |j ./, a

; /(/!)}

for some indexing set J (and the relevant set being undirected), we may represent

the action of the morphism tracked by / on [a] as [LJj{/aj}>^] (by continuity, cf.
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Theorem 8.1.1 I). Again by roiitinnity, wo ran writ.r this as the donhlo luh

/ J

and the relevant sets being directed in /(/?), the lub exists in ll(f(B)), and hence the

proposition.

Corollary 8.1.15 For objects A =
[a], B =

[/?] A
, iff tracked a morphism (A) -* (B]

(in MOD,/, then f tracks a valid morphism il(f(A))
-

il(f(]))).

We shall use the preceding group of results to establish that certain A-morphisms remain

valid when we reason in the context of L.

We demonstrate now that the category L is internally cartesian closed. The relevant

clauses in the definition use the notion of an internal adjunction (and internal natural trans-

formations) rather heavily and we recall the definition of the former.

Definition 8.1.16 Given internal categories C and D (in some ambient category), and in-

ternal functors F : C -+ D and G : D - C, and natural transformations 77
: idc -^ GF

and : idr} > FG (where idx denotes the identity functor on the internal category X), we

say that F is a left adjoint G, or G is a right adjoint to F, or that (F,G.ij,c) constitutes an

adjunction between C and D if and only if the following commutations obtain.

C j GFG -^ G = idc

F I*. FGF *> F = jdF

where idx, for a internal functor X denotes the identity natural transformation on X, and

the relevant composition of natural transformations is the vertical composition.

With this definition, we claim the subsequent set of results. We shall use a few notational

conventions: objects of L that have been defined to be of the general form (X,tl(f(X))) for

X =
[a] 6 AQ would be denoted simply as a to keep the notation simple. We would denote

an expression of the form Sz : a./? as a x /? and Hi : a./? as a . With these conventions, a

typical element of L^ may be represented as ((a, /?),[/]) meant to represent the (unique)

morphism from a to tracked by [/] (this follows from the form of the elements of AI); we

would frequently use simply / rather than its equivalence class, and drop the domain and

co-domain components whenever clear from the context. We shall generically denote the

functors constituting an adjunction as F and G (with the former being the left adjoint to

the latter). We would also not be explicit, in the proofs below, about the codes tracking the

particular morphisms that are mentioned: in all cases, the codes are obvious constant terms

and may be easily constructed by the reader.



158 CHAPTERS. INTERNAL DOMAIN THEORY

Theorem 8.1.17 The (unique) internal fnnrtor IL : L 1, where 1 is the discrete category

on the terminal object 1 in u-Sct, has an internal right adjoint T : 1 * L.

Proof: We shall take the terminal object 1 as given by the set {*}. This is, of course the

object of objects 1 of the internal category 1; the object of morphisms l t is given as

the identity idi of the terminal object. The object and morphism parts of the functor

IL are obvious and we shall not labour the details. The functor T is given as follows:

To : 1 - Lo : * -> ft

T} : li -> L! : idi ~ idn

where idn denotes the internal identity morphism on the object 17 (the A-Type of the

standard unsolvable term). The conditions of functoriality may be easily verified. The

natural transformations 77 : idi, -* GF and i : FG -* idi (with F = IL and G = T)

are given as the morphisms

T?: Lo-^L,: a~ ((a,ft),Aa;.ft)

respectively, and the conditions for a natural transformation may be easily verified. We

explicate the following compositions:

FTJ = FI o
r/

: LO -+ li

(F = o FQ : LQ -* li

rjG = ijoGo : \Q > L}

Gc = (7i o c : 1 -> LI

where we have used idn to denote the LI -element representing the identity on the object

ft. With those the relevant identities may bo verified

(cF)o(Fn) : o- >-* idi oidi = idi

* i-^ idn o idn = idn

and hence the proposition.

We would claim, next, that the category L has internal cartesian products. This property

too is framed in terms of an internal right adjunction. We have the notion of an internal

product category LxL: its object of objects is predictably LoxLo, while that of its morphisms
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is Z/i x LI; the product of internal categories is defined exactly in the same way as the

product of "external" categories. The rest of the components of L x L follow easily from this

consideration and we shall not labour the details. We have the internal diagonal functor,

A : L -* L x L: we can verify its components given below.

AO : LQ LO x LO : or i-> (a, a)

Ai: L^LtxL,: ((a,/?), [/])_> <
Q ,/3), [/]),<>,/?),[/]))

We shall drop the annotations of domain and co-domain whenever clear from the context.

We have the main result.

Theorem 8.1.18 The internal diagonal functor A : L -> L x L has an internal right adjoint

V.

Proof: The functor V is given as follows:

V : LQ x LO -> L : (a,/?) -> a x /3

V,: laxL,-*/,!: {a,/J),[/]),7,*),W)) -

The conditions of functoriality may be easily verified. The relevant morphisms may be

seen to be well-defined on the basis of Lemma 8.1.13 and Corollary 8.1.15: this would

also bo the case for tho morphisms defined subsequently, and we shall take this as a

general condition entailing validity without mentioning it explicitly every time. The

natural transformations 77
: idL -> GF and ( : FG -* idLxL (with F = A and G = V)

are given as the morphisms

77: LQ-+LI: a~((a,axa),[Ax.(jr,x)])

respectively, and the conditions for a natural transformation may be easily verified. We

explicate the following compositions:

Fn=Fl oi] : a ~ (((, x a),[Ax.(x,x)]>, ((a, a x a),[Ax.(x,z)]))

cF = coF : a^ (((axa,Q),7r ),((axa,a),7r 1 ))

ijG = noG : (a,/?> ~ ((a x ft, (a x /?) x (a x 0)),[Ax.(x,x)l)

With these the relevant identities may be verified

(cF)o(Frj) : a - id (8.1)

(Gc)o(ijG) : (ax^)^idax/? (8.2)
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where Equation 8.1 follows from l.lo fact:

(7r oAx.(x,x))(a) = a

for any [a] 6 a; and Equation 8.2 from the fact:

(Ax.(iroiro(*).*ii(*)) o Ax.(x,x))(a,6)

=
(Ax.(7r 7ro(x),7r 1 7r 1 (x)(((a,6>,(a,6)))

=
(a, 6)

for any [(a,&)] G x /?. Hence the proposition.

In the next and final result, we shall claim that the category L has exponents: the

definition, as earlier, is couched in terms of an internal right adjoint. We recall that \Lo\

denotes the discrete (internal) category defined on LQ, the object of objects of L. This

category has Lo as both the object of objects and the object of morphisms. The internal

identity is then simply the identity id/, ,
which is obviously an isomorphism. We have the

product category |Lo| x L, and we shall denote it as x- We have the (internal) functor

P '

X -* X defined as follows:

Po
'

Xo-^Xo' (a, ft)
~ (a, a x

/?)

Pi' Xi-Xi: (<(a,a),/),(</3, 7),[/]))~

<((a,a),/),((a x /?,a x 7),[A*.(M*),/*i(*))]))

The conditions of functoriality may be easily verified. The relevant morphisms may be seen

to be well-defined on the basis of Lemma 8.1.13 and Corollary 8.1.15 as before. We have the

main result.

Theorem 8.1.19 The internal functor P : \ > X has an (internal) right adjoint E.

Proof: The functor E is given as follows:

EQ: Xo -* Xo : (a, 7 )
-. (o,a^>

Ei: Xi - Xi
'

(a,a),/),((/?, 7),[/]))
~ (((a,a),/),((^, 7

a
),[Anx./(n(a:))])>

The conditions of functoriality may be easily verified. The relevant morphisms may

be seen to be well-defined on the basis of Lemma 8.1.13, Lemma 8.1.14 and Corol-

lary 8.1.15, as earlier. The natural transformations ij
: idx -^ GF and e : F-G -* idx

(with F = P and G = E) arc given as the morphisms

rj: Xo-Xi: (a,/?) ~ (a,a>,7), /?,(" x /?)), [Axy.(y,x)])>
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respectively, where ev is the evaluation combiner, tracked by lx.(w t ( r ))(Wo (x )). The
conditions for a natural transformation may be easily verified. We explicate the follow-

ing compositions:

where g = ^z.(Tf (z)Jin(z)) with / =
Axy.(y,x)

cF = co/b : {,/?)-* {((a, ),/), ({a, x(ttx/?)
a
,a x/5),ev))

Ge = Gl0 e : (a, ft) (((a,Q>,/),(((a x ^r,^),[Anx.ev(n(x))]))

With these the relevant identities may be verified

: (a,/?) ~ id
(Q|Q x ^ (8.3)

(Gc)o(K?) : (a x /?)
^ id a0 (8.4)

where Equation 8.3 follows from the fact:

(evo0)(a,6) =
cv((a,Ay.(!/,6)

= (Ay.(y,6o

=
(a, 6)

for any [(0,6)] 6 a x /?; and Equation 8.4 from the fact:

(Anz.ev(n(z)) o Axy.(y,x))/

= (Axy.(y,x))(Ay.(y,/))

= Ax./x

for any [/] /3
Q

, and hence the proposition.

Theorems 8.1.17, 8.1.J8 and 8.1.19 yield that L is an internal cartesian closed category,

and thus epitomizes the program we have been developing. It generalizes the analogous

condition for the Heyting semantics of propositions, which gave us a Heyting-algebra object

as the object of its Tarskian semantics. However, we may still note that the internal category

L is a fairly impoverished object. For one, it is not a full internal sub-category of MOD:

thus, the computation of its limit properties would be quite a complex matter, as the proofs
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of the last throe theorems would have shown. Second, it is far from complete as an internal

category: that too diminishes the serious possibility of its functioning as an internal category

of domains, capable of yielding solutions of recursive domain equations. Third, the category

is really one of dcpos and not of domains: many of its objects do not have a bottom element,

and that limits its potential for yielding unitary solutions of functions defined by recursion

at all Types. Finally, it loses the rich fibered structure of the Types: in fact, such a structure

would have been preserved under the completion if the following property could have been

shown to hold.

Property 8.1.20 // in f[^x : a. (3] there is a directed set

and (a, 6)
= U{(.A) I

' /}, then [a] f(a] and
[6] f\ft(b/x)].

This property is violated principally by the product Types, which in fact, are the ones that

lack a bottom element. Of course, we would expect that there would be a loss of information

and thereby of structure in the transition to denotations; and fiberwise structure would

predictably be a casualty in this process. Yet, the deficiency in respect of the first three

points listed above does limit the theoretical significance of the construction especially with

regard to the possibility that the latter might be a concrete instance of a canonical category

of domains in the topos that we would describe in the next section (the replete objects).

Perhaps this indicates that some more sophisticated form of completion is needed to yield

the desired properties, and this is a matter for further investigation.

8.2 Towards a Synthetic Theory

Perhaps the most challenging question in the last two and a half decades of formal semantics,

has been the possibility of treating the domains of the denotations of programming languages

as sets, with full function spaces. Perhaps this makes more sense to a logician than to a

computer scientist, but the advantages of being able to reasoning about (the semantics) of

Programming language Types, using standard (perhaps intuitionistic, higher-order) logic is

undeniable. We have remarked upon the impossibility of being able to do this in the classical

universe of sets; the resolution was, as we have seen, embedding the theory (category) within

a non-standard (intuitionistic) universe which essentially meant an elementary Topos

usually through a pre-sheaf construction (cf. [74, 62]). The outcome was in general, an

internal category in the Topos, with enough completeness to support the standard Type
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constructions. A lacuna in this approach was the systematic exploration of the properties

of such internal categories, especially with a view to supporting the standard constructions

within programming language semantics. For instance, it was known that cartesian closed

categories, having fix-points of endomorphisms and equalizers, were degenerate. Hence, it

was important to demonstrate the viability of such basic semantic constructions within the

internal categories obtained by the general method.

At this juncture, a need was felt to formulate this general program within an axiomatic

framework: that is, systematically build up the theory of a (complete) category of domains,

internal to a Topos. The suggestions had already made by Scott, and taken up by Hyland, to

have theory of Domains formulated completely and axiomatically within the internal language

of a Topos. As we have indicated earlier, the minimal requirement of such a theory was to

support the fix-points of functions, and the limit-colimit coincidence structure for the solution

of recursive domain equations ([80]). Rosolini ([68, 67]) and Mulry ([54]) constructed most

of the initial scaffolding: the basic abstraction was the concept of a partial map classifier

within a Topos, and of a classifier of recursively enumerable sub-objects. Such a class of

sub-objects could provide the basic topology, the specialization order (or the intrinsic order)

with respect to which could give us the basic (pre-) domains. There were alternative ways

to look at this which would not emphasize the intrinsic order, but start with some other

basic considerations relating to the structure1 of the recursively enumerable sub-objects (for

instance, the "external" inclusion order amongst such sub-objects). The great virtue of

this general technique was that it gathered into a single general framework the notions of

continuity and eflectivity that had been known for almost three decades to be foundational

to the concept of computability: and this framework was a priori in that it invoked no ad

hoc notion of codings or Godel numberings.

The essential consideration in all the variants of this theory was the concept of a partial

maps within a Topos, and a classifier of the sub-objects of the domains of such partial maps,

which could be thought of (in a suitably qualified sense) as computable. Since the development

of this thesis draws to an end, we shall have to abbreviate our account to simply providing

a sketch of the foundational notions on which this theory can be developed, and situate the

constructions of the previous section in its context. As we just mentioned, the cornerstone of

the theory is the notion of a classifier E of the domains of those partial maps in the Topos,

that we would like to consider as computable. Recall that in the external universe, the

domains of general recursive functions are precisely the recursively enumerable sets. Hence

the classifier 2 could be thought of as the classifier of recursively enumerable sub-objects.

Certain general considerations on the nature of the computable maps give us the basic axioms
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which we would have this object obey (cf. [86, 35]). A significant principle is that it should

be, in fact, a sub-object of the usual sub-object classifier 12 of the Topos. Hence E should be

thought of as the object of "computable" truth-values. We elucidate the basic axiom upon

which we base the object E below. It is essentially an adaptation from Hyland's essay ([35])

on the topic.

Axiom 8.2.1 We have a sub-object S of. the (usual) sub-object classifier SI, equipped with

the sub-object T : 1 > E. The pullbacks of arbitrary maps f : X > E along T are called the

E -subsets (denoted by the symbol C%); we assume that T is a generic ^-subset, in the sense

that every ^-subset f of an object X ,
is obtained by pulling back an unique (classifying) map

f : X > E along T. We would also require that A CE B and B CE C implies A CE C.

A number of consequences follow from this axiom: those significant for our purpose are:

1. for any object A', we have that X CE X ,

2. the pullback of a E-subset is a E-subset, and

3. the collection of E-subsets of an object is closed under finite intersection.

The actual theory goes on to posit a number of other axioms, some of which we shall mention

as and when required.

The conditions of Axiom 8.2.1 are usually presented in a form convenient for reasoning

in the internal logic. The first and last conditions of the axiom are summed up in an internal

logic statement which we present below.

T 6 E (8.5)

An object with these properties is known as a dominance ([68]). A number of such objects

have been used in the study of internal domains. We mention one due to Rosolini ([68]),

existing within the Effective Topos and defined by the following internal language statement.

E = {p ft
| 3/ : NN .(p O 3n : N. f(n) = 0)}

Note that it is defined a priori as a sub-object of i).

We shall use (wo different kinds of dominances in this section. The first one is due to

Phoa ([58]), and we demonstrate how we may use it in a farly straightforward manner to

"secure" the partial order on the objects of our category L.
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Definition 8.2.2 The object V .* defined to be the motlest set having as its underlying set

{T,l} with T realized by the set {/} and 1 6y the set {fi} (where fl =
l(*x.xx)(Xx.xx)] ).

The first step in establishing this as a dominance would be to formulate its definition as a sub-

object of ft, the sub-object classifier. The reader may verify, that E as defined is (isomorphic

to) the following sub-object of ft.

[p II
|
3x A.(-.p *(* =

/)) /\(p <* (x = ))}

The actual proof that this object is indeed a dominance is quite complicated and we refer

the reader to [60] for the details.

Given a sub-object of ft that is a dominance, we may take the sub-objects (of any object)

classified by it, as a set of recursively enumerable predicates, and define on their basis an

(intrinsic) pre-order on the object X. In very much the same fashion that a specialization

order is defined in a Topology, we have the following definition.

Definition 8.2.3 For any object X in the Topos ft, and x,y X, we write:

This can be easily seen to be a pre-order. We would of course be interested in those objects

for which this is a partial order. Such objects are known as E -spaces, and may be defined as

an object satisfying the following statement.

The natural map X > EE
is a mono,

or equivalently

Vz, y : X.(V0 : E* .#*) & <j>(y))
= x = y

Paul Taylor calls this the Weak Leibnitz principle, which essentially asserts that any pair of

elements which satisfy the same set of recursively enumerable properties, are in fact the same

([86]).

The dominance defined in Definition 8.2.2 would not be very useful, but it is instructive

to see exactly why not.

Theorem 8.2.4 For every object a L the relation < is entailed by the internal order X.

Proof: We know that a is (essentially) a modest set; consider any map $ : a -+ E: since

both domain and co-domain are modest sets, this is essentially a map in PER. Suppose

it is tracked by the code / which is the same thing as saying that / realizes that the
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functional relation representing <j> is total. Consider any elements [a] X [6] a: From

the definition of maps in PER we know that for all x [a], (/ x) h <([a]). Now if

for any x [a],>j(/ x) = / we would have that for any y [6], (/ y) = I since we

have that for any context [], if C[a] is solvable, then so is C[6], (and in fact both have

the same head normal form; cf. Proposition 8.1.3). Hence we have that for any map

4> : a -> E, <j>([a\)
=

</>([6]);
and thus

W :< W => W < W

which is our proposition. Note that the converse may not hold, since the space of

morphisms 4> : a -+ would in general be (properly) contained in the space of all

A-contexts, and it is precisely for this reason too that we may not assert that the <C

pre-order is an order.

Hence, we would be justified in looking around for a dominance with respect to which we

would have in L, a category of E-spaces. In the next series of definitions we work towards such

an object. We shall denote by the symbol a, the unary predicate of solvability on the object

A. Recall that a term is solvable if and only if it has a head normal form, or equivalently, if

the head reduction sequence of the term terminates. There is an effective procedure (i.e. a

partial Turing computable function) for this, which terminates if the term has a (principal)

head normal form, and diverges otherwise. Hence we may assert that the solvability predicate

is recursively enumerable. We make the following claim.

Lemma 8.2.5 The binary predicate <r([x],[y)) on A, defined by the statement

(l*],ll) ([*])A <%])

is recursively enumerable. Hence there is a \-term fl such that t?-(x,y) is solvable if and only

if x and y arc both solvable.

Proof: This is fairly straightforward. Given the partial Turing computable function for a,

we simply run it first on x and then, if it terminates, on y. This gives us the required

partial Turing computable function call it / and demonstrates that a is recursively

enumerable. But then, by the equivalence of (partial) Turing computable functions,

and the functions encoded as A-terms, we would have a A-term tf which computes the

same function /. Hence the proposition.

We shall write tf(x,y) for the term ti (x,y), and confuse terms with their /3-equivalence

classes in the sequel. Hence, by the result above we have that

t=<7(rt(*,y))0<7(*)/\<T(y) (8.7)
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for arbitrary elements x, y in A.

Definition 8.2.6 We shall denote by A, the quotient of the object A by the equivalence rela-

tion ~. We define the following sub-object of the classifier 17.

E =
{p <E ft

|
3JT A.(p & 3x

Note that X, in the context of this definition is a (closed) sub-object of the object A of ft:

the latter is an object which has the underlying set A, and with the equality defined by

i = n]
= I

{ra} if m = n

otherwise

where m, n 6 A; thus X inherits this equality from A. This remark is important for the

application of the axiom of countable choice in Theorem 8.2.7 below. We claim that E is a

dominance.

Theorem 8.2.7 The object E defined in Definition 8.2.6 above, is a dominance.

Proof: Let us establish the validity of the two defining properties of a dominance set out in

Equations 8.5 and 8.6. First, we may set T to be the specified element [/]~ of A. This

would secure us our first property. As for the second we have the following argument

in the internal logic. Suppose p E: this means that for some X, an equivalence class

in A, we have that p O 3x X.a(x). Now the clause (p = T) => (q 6 E) translates as

the (internal logic) statement:

3x 6 X.ff(x) => BY e A.(? <* By Y.a(y)) (8.8)

O Vx X3Y A.(<7(z) => (q & By Y.ff(y)))

since a(x) is (semi-) decidable

<* Vx X.(<r(x) => (9 <* 3y *(z).<7(y)))

using the axiom of countable choice for a choice function K : X -> A

hence, (;>A<7) <* 3x X.3t/ K(X).<T(X) /\a(y) (8.9)

Now note that both X and A are modest sets; hence we may take the function K. : X -+ A

as essentially one between PEIls. Let it be tracked by the code / (as before, this is the

same as saying that / realizes the predicate that the functional relation representing K

is total). From the modest set structure of the domain and co-domain namely that

any x 6 X is realized by the set {x} and any equivalence class Y A is realized by
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the set of all the codes in Y wo have that Vx X.(f x) (*). Consider the set Z 1

defined as follows:

Z's{tf(z,y)|xeX,yeK(*)} (8.10)

we claim that any pair tf(z, y), t?(x', y
;

)
Z' are in the equivalence relation ~. We have

the following argument. Consider any context []; we have that

x)]) since y
~ / x

=> cr(C[tf(x',/-x)]) since x~x'

z'
f /*')]) since (z

~
z') *>(/ z * /*')

')]) since y
;

-/.x
;

and by symmetry of the argument the claim is established. Now define Z to be the

closure of Z' under the equivalence relation ^: that is, Z is defined by the following

internal language comprehension scheme.

Z = {z A
|
3z' Z'.VCH. cr(C[z]) <* o(C[z'])}

Now we claim the following.

(3x 6 X.3j/ K(X).<T(X)/\<T(J/)) ^> 3z Z.<r(2:)

The argument in the direction => is obvious (recall Equation 8.7). The other way is

also straightforward: by the definition of Z we have

3z e Z.a(z)

=> ^z'^Z'.a(z')

=> 3x X.3y K(x).a(t?(x,y)) cf. Equation 8.10

=* 3x X.By 6 (x).<r(x) A^(y) cf. Equation 8.7

and hence the claim. Thus we have from Equation 8.9 that

pf\q*lzZ.<r(z)

with X 6 A, and IKMKO (;>Av) C ^).

We shall see that taking E as our dominance, allows us to derive some significant canonical

properties of our category L. In fact, S has some interesting features apparent prima facie.
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II IH a Hub ol>j-< t of UK* <la.HHili<.| Si, roiilainiiiK Mir iliMliiiguinlii'il olomn.l 1 which wo have

defined as [/]~; it has a bottom element J_ which is essentially the empty set corresponding

to the ~ equivalence class of all unsolvable terms. In fact E is a modest set, and isomorphic

to the modest set A: we may make its modest presentation explicit as follows

for p 6 E such that 3X A .(p & 3x X.ff(x))

we have x h p <=> x X

and obviously is realized by the set of unsolvable terms. Also, E has a pleasing relation to

the objects of L: namely, every object of the category is a sub-object of E. We shall see that

this has important consequences for L. We note another significant fact in the next lemma.

Lemma 8.2.8 For any code [/] A, and for any A" L, there is a morphism <j> : X -> E

tracked by f.

Proof: We have abused the language in the statement of the lemma, in implicitly considering

a 3?-morphism between any X 6 L as equivalent to one between the corresponding

PERs. A more precise statement would be that any code / realizes the totality condition

on the functional relation representing some morphism between any X L and E. We

shall go by the abused version since it simplifies the proof. Consider any code /, and

any X as before. We know that for any x,y A, x ~ y implies that (/ z)
~

(/ y):

hence, we define the map </>
as follows: <f>

: [a]
>-* p where p <=> By Y.a(y) with

Y = [/ a]~. it requires a slight re-formulation to write this in terms of a functional

relation in 5? and we leave that to the reader.

With this we would not have much difficulty in establishing the fact that with respect to E,

we have in L, a category of E-spaces.

Theorem 8.2.0 Any object in the category L is a Z-space, with the internal order X coin-

ciding with the intrinsic order <C.

Proof: Consider any X L; since both X and E are modest sets, we shall consider maps

in 5? between as between PERs. Suppose for [a], [6] X, and all < : X - E, we have

<([<*])
= #M); by Lemma 8.2.8, this implies that V/ A. (/ a)

-
(/ 6) which means

that for all contexts <![.], C[a]
~

C[fr],
which is to say that a - 6 or that [a]

=
[6].

Hence

X is a E-space.

As for the coincidence of the orders, note that X=< is easy: since if [a]
<

[6] then for

any code /, if / a is solvable then so is / b. Hence for any </>
: X -> E, <([a])
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For the converse, suppose we have that V< : X E.<([a]) => <([&]). By Lemma 8.2.8,

this would mean that for any code / (and thus, for any context C[-]), if f-a (respectively

C[a]) is solvable^then so is / -6 (respectively C[6]); but this is precisely to say that 0X6

or that [a]
<

[&]. Hence the proposition.

Thus the choice of the dominance is extremely important in establishing the desired properties

of our category.

In the last part of this section, we shall touch briefly upon a canonical property that the

category L exhibits. A comprehensive discussion on the precise significance of this canonical

property is beyond the scope of this thesis: that would require too deep an excursion into

Topos theory. We shall merely indicate that our category satisfies this property and hence

is, in some sense, canonical.

Over the last few years of research into the topic of internal domain theory, there has

emerged some agreement upon the internal category of domains that one would like to con-

sider as canonical, and that, in some sense has the greatest theoretical economy. We have

seen that our category satisfies the property of being a D-space, and is complete with respect

to countable sequences increasing with respect to the intrinsic order. Such things were called

complete E-spaces by Phoa ([58, 59]), and considered as an appropriate category of domains.

Likewise Freyd et a/ considered a class of objects known as extensional PERs, as an appro-

priate category of domains ([22]). A common concept emerges in Taylor ([80]) and Hyland

([35]) about such a category. As the latter remarks, two considerations should inform the

choice of the appropriate category: first, that we should generalize the weak Leibnitz princi-

ple to (semi-decidable) properties (a precise statement of this would be given in the sequel);

and second, that the category should have "sufficient" internal completeness to handle the

standard semantics of constructive Types. Hyland demonstrates that both considerations

converge on a single characterization: namely that of the category of replete objects, which

is the least internally full reflective sub-category (of the Topos) which contains the object E.

As we have said, a precise formulation of this theory is beyond the scope of this work. We

shall merely indicate a few of the principles underlying its development. The generalization

of the weak Leibnitz principle mentioned above, takes the following form, which we excerpt

from Taylor ([86]).

Definition 8.2.10 (The Strong Leibnitz Principle) If a morphism p : X * Y induces

a btjection between scmi-decidable predicates, with Y satisfying the weak Leibnitz principle,

then p is an isomorphism.

Hence, as Hyland remarks, this principle essentially ordains that objects arc determined by
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their E-sub-objccts. The precise definition of the category of such objects can be arrived at

in different ways. Taylor considers a kind of a epi-mono factorization of the natural map
ex

' X -* EE
,
to arrive at a characterization. We shall use Hyland's definition ([35]).

Definition 8.2.11 A map g : P -> Q is said to be E-equable if the induced map g : E -* Ep

is an isomorphism. A map f : A -> B is said to be E-replete if for any Z-equable map
g : P -> Q, the (induced) diagram in Figure 8-1 is a pullback. The internal full sub-category

Figure 8-1: E-replete Morphisms.

of all objects A such that the unique map A * \ is %-rcplete, is known as a category of replete

objects. We shall say that any object A for which the map A 1 is E-rcplcte, satisfies the

replcteness condition.

In the internal logic, and as sot out in [35], this characterization assumes the following in-

tuitive form: replete objects are objects A, such that for any E-equable map P - Q, every

commutative square of the form shown in Figure 8-2 has an unique diagonal fill-in 5 : Q - A.

We shall use this characterization and show that our category L is a sub-category of the in-

ternal category of replete objects. We note the following fact about the map / : EQ -> Ep

induced from an arbitrary map f : P * Q.

Lemma 8.2.12 For the canonical map f : EQ -> Ep induced by a map f : P -* Q, we have,

in the internal logic

\= V// : Eg .VG :

P
./(# )

= G=*G = HF

where we use f(H) = G as an abbreviation for [/](//, G) = T, [/] being the functional relation

representing f, and the formula G = If o F stands for

; : P.Vs :
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A 1A
^

1

Figure 8-2: Replete Objects.

where upper-case letters denote the functional relations representing the corresponding mor-

phisms in lower-case.

Proof: In the internal logic, the situation is pretty much as in the category of Sets. We

sketch the argument in the internal logic; the basic validities used in the proof can be

checked up in [37]. We note first the structure of the exponent E^: as set out in [37],

it has the general structure of exponents in the Rcalizability Topos, which has the set

of maps homge^g(Q x E,fi) as its underlying set, with equality defined as follows:

[F = F] = ['F is a functional relation']

We shall use lower-case letters to denote morphisms, and (corresponding) upper-case

letters or enclosing square brackets to denote the representing functional relations. Since

we have a map / : P Q, we have a map (id,/) : D

the internal logic

(= V/7 : E.Vp P.VH' : EP .V? : . [(id, /)]((#,?)

Composing with the canonical evaluation morphism c :

U^ x P * E, for which wo have the validity

x P x Q, for which, in

',?)) <* H = H 1

/\F(p,q)

x Q > E we have fo (id,/) :

P.Vs : E.[(c o (id, /]((//, p>, s) &

'(q,s) (8.11)

Now for any map j : A x B > C we have the exponential transpose j* : A > CB
,
for

which we have the validity

|= Va AXF : CB .J*(a,F) => (V6 : B.Vc.: C.F(6,c) & 7((a,6),c))
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Hence, taking the transpose of the map e o (id,/), we have the validity

(= V/7 : E^. VG : V 1
'. [(< o (id, /))*](//, G) =*

(V;i : />.V : E.G(/>,s) O [<
o (id,

Hut then, from ICqtiatioii 8.11 wo have that

V// : SQ . Vp P. V* : E.
[e

o
(id,/)]((7/,p), 5

)

^ 3/7' : E<3.3g : Q.i

,a) (8.12)

(8.13)

where the last statement can be seen to hold on the following grounds: the implication

8.12 => 8.13 follows from the definition of = on the object E^; the converse implication

follows from the fact that f= H = H '

=> EH f\ EH 1

by the same definition. Thus we

have:

|= Vtf :
Q .VG : Ep .[(f o

(id, /))*](#, G) =

(Vp : P.Vs : E.G(p,*) * 3? : Q. F(p,q) /\H(q,s))

But the transpose is precisely the functional relation representing /; hence the propo-

sition.

We also noto that any object of tlio internal category L is a sub-object of the object E, and

hence that any morphism / : P -* A, from an arbitrary object P to an object A L can be

considered as a map /' : P -* E. We state this formally.

Lemma 8.2.13 Any object A e L is a sub-object of the object E, and hence, for any mor-

phism f : P > A from an arbitrary object P, we have a corresponding (unique) morphism

i o / : P >
,
where t : A >- E, is the obvious monic.

Proof: Considering both A L and E as modest sets, we can easily see that A is a sub-

object of E; we have the monic t : A>-+ E, which has the following description: for

any element X of 4, realized by the class [z]~ of codes, we have that i(X) = p where

p = 3y e (x]~.0(y) (we have confused descriptions of morphisms in PER with those

between modest sets). This can be easily seen to be a monic. Now any morphism

/ : p _ A, extends to i o / : P -* E and the property of monies tells us that if, for any

g : p _, A, we have iof = tog, then we would have that / = g. Hence the uniqueness

of the extension.
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Remark 8.2.14 Hy virtue of this proposition, we, would, in the sequel, confuse maps I : P >

A (with A L, and P arbitrary), with the map i o / : P > E.

>.

Theorem 8.2.15 Every object in the (internal) category L satisfies the repleteness condition.

Proof: We refer to Figure 8-2, and consider any E-equable map / : P > Q, and commutative

square comprising maps l:P*Am:Q+l and IA : A > 1. We define a map

5 : Q x A -* ft (note that this is a morphism in the category of Sets, and not in the

Topos 5?) by the following statement:

where we have used the letters F and L to denote the functional relations representing

the morphisms / and / respectively. We claim that the map S is a functional relation,

and verify the defining properties.

Relational: From the relationality of the functional relations F and L we have the

following validities.

,g)) /\q = g' =>

whence,

?( (</, /\<1
= ?' A" = a/ =

Strict: From the strictness of F and /, we have the following validities.

F((p,q)) =* Epf\Eq

L((p,q)) => Epf\Ea

whence,

S((q,a))=*Eq/\Ea

Single-valued: We shall need the D-equableness of / to prove this. Suppose we have

that 5(</,a) = T/\S(</,a
;

)
= T; then we could have two possibilities:

Case F(p, q)/\ L(p, a) f\ L(p, a'): then, from the single-valuedness of L we would

immediately have a = a', proving the proposition.

Case F(p,q)f\ F(p
f

,q)/\ L(p, n)/\ //(;/, a'): from Lemma 8.2.13, we may confuse

the map / : P > A with the map t o / : P -+ . From the E-equableness of
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/ : P -* Q we have a bijection / :
$ _> Ep

; let I be the image of // under

this bijection that is, f(H) = L in the notation of Lemma 8.2.12. We have

from Lemma 8.2.12 and arguing in the internal logic,

F(p, q
1

) /\ //(</', a) /\ F(p', ,7") /\ fftf', a')

for elements </',</" Q; but then, from the hypothesis, and single- valued ness

of F we would have that q =
g' = 9"; relationality of // would yield us

H(q,a)f\H(q,a') and single-valuedness a = a'.

Total: We claim (in the meta-theory) that for every q 6 Q, such that |= </, there

is some p e P such that F(p,q) = T. Now suppose our claim is false. Let

us designate by q, the element of Q, such that there exists no p P such that

F(P><l) = T. Let a denote a specified element of E; define a functional relation

H : Q x E -> ft as follows:

otherwise

The bijection / must assign some element G Ep to //, and we would have

from Lemma 8.2.12 that G II o F as explicated in the Lemma. But then

looking at the formulae defining composition, and the definition of // we see that

Vp : P. Vs : E. G(p,s) = 0, which violates the condition of Totality: thus G cannot

be a functional relation; but then, if f(H) = G then we must have that EG which

means that G must be a functional relation. Thus we have a contradiction,-which

implies the premise cannot be true. Thus our claim stands vindicated. Now we

claim the following validity:

(= Eq => la : A.S(q,a)

for which the realizer is the code \x.y where y realizes (= Ep => 3a : A.L(p,a),

and p is an element such that F(p,q) = T.

This completes the argument that 5 is a functional relation. As for uniqueness, suppose

we had another fill-in represented by the functional relation 5'. From the commutation

condition, and the fact that / is surjcctivo, we would have the proposition. More

explicitly, we have the following logic (in the metatheory). First note that for any

q G Q for which thoro is some p P rh that F(p,q) = T, we must have that

S(q,a) = T = S'(q,a) where a is an clement of A, such that L(p,a) = T. This holds



176 CHAPTER 8. INTERNAL DOMAIN THEORY

because both 5 and ,$" are fill-ins. But we have argued above that for every q Q there

is some p P such that F(p,q) = T. Hence we have, that Vg Q. Va 6 A. S(q,a) =

T & S'(q,a)
- J. From this it is easy to claim the validity

for which the realizer is simply the (code for the) identity.

Hence our category L is a sub-category of the category of replete objects relative to the

dominance which is itself not an object of this category. With this thought, we conclude

this chapter, leaving to the Conclusion, the reflections and conjectures on the results thus

far.



Chapter 9

Conclusion

if there is in the history of semantics, any one concept which can be made out, even if in-

distinctly, to be at the back of every epochal moment, it is the concept of structure. To my

understanding, the greatest insight in Frege's philosophy was that the analytical theory of

meaning can proceed rigorously only on the basis of an adequate conception of structure: it

was only thus that the former may attain a completely objective status. The theory of mean-

ing has a history to the precise extent that the notion of structure was never determinately

conceived. Much of the intellectual ferment around the theory of truth and subsequently,

the cxtonsional theories of meaning was founded in an unnecessary mistrust of Frcgc's per-

ceived intensionalism. If it was true that Frege's theory was intensionalist which it was it

was equally true that intensions were never meant to be mysterious "internal" objects: they

were conceived in the first place as completely analytical and objectively presented entities.

The lacuna was that they were never thus presented, and from that, truth-theorists decided

to do away completely with them. We have seen that a fortiori such a theory may never be

complete: the burden may only be shifted to a meta-language, and the resulting theory estab-

lishes application only through the declaration as illegitimate of an entire class of perfectly

meaningful expressions (semantic paradoxes).

It is only in the latter half of this century, that the notion of structure revealed an opening

from another direction: namely, the concept of information. The general insight, available

across a number of disciplines, was that entities were informative to the extent that they were

structured, and that the information content of such entities was amenable to formal analysis;

a number of measures of information were formulated at varying levels of abstraction and

from diverse theoretical perspectives. In the specific context of formal semantics, seminal

abstractions came from within Intuitionism. The first was the formulation of intuitionistic

validity in terms of sheaf interpretations of higher-order logic ([45, 87, 28, 19]); the second
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was the theory of constructive proofs of A. Ileyting ([87, 27]). The essential insight in the first

was that the information content of objects was only incompletely represented in their global

elements (corresponding to complete evaluations); in general, local sections (corresponding

to partial evaluations) had to be taken into account. The essential insight in the second was

that information embedded in the structure of expressions could be represented in the class

of its proofs that is, transformations and analyses according to the inference rules of the

language; moreover, such information could be extracted as effective procedure provided the

rules of inference were formulated in a certain finitistic (and effective) way.

The essay into constructive semantics in this dissertation is animated by the perception

that a truly general semantic framework should take every linguistic system (formal or oth-

erwise) as its field; and that such a framework should be formulated as an abstract theory of

information. The question was whether constructive type theory could furnish such an ab-

stract and general framework. The scope of this question extends considerably beyond what

can be, and has been attempted within this thesis: in the general context of the question,

it should be viewed perhaps as a prolegomenon. As stated in the introduction, it initiates a

certain application of an available theory, and argues for the validity of the generalization.

The argument accepted, its success as a sufficiently foundational framework has to be judged

on the ground of the necessity of its logic the extent to which its basic constructs are free

from the ad hoc. We are perfectly aware that all the information constituting semantics is

contained within syntax: the point is how economically the redundancies of the latter what

Girard characterizes as "taxonomy" ([25]) are factored out. It is here that the inherent

limitations of the constructive paradigm become apparent.

The ad hoc appears at several points in the construction of our CC-Category in Chapter 6.

The syntax of the Types and Orders is almost trivially induced from that of the basic Theory

of Constructions. The intimate relation with the u-Sets and the PER model is practically

forced on to the constructions the requirement of having a name for every w-Set morphism

in the syntax being a particularly awkward technical symptom and the justification for this

can only be provided a posteriori. Moreover, the Types are constructed so as to correspond to

equivalence classes of terms: this is a choice forced by the formalism and while semantically

equivalent terms should have isomorphic Types (as argued in the Introduction) this should

be a conclusion of the theory and not an initial choice. Finally, the Types of the pure A-

terms form only a small part of the induced theory even if we ignore the sums and products

representing quantification over Orders; the sum and product Types do not, in general,

correspond to the Type of any A-term. This is a significant divergence from the prepositional
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These arc symptomatic, perhaps, of a certain hesitation in the formulation of constructive

type theory itself. As pointed out by Girard ([25]), the intuitionistic sequent calculus sup-

presses the basic symmetries of logic: it forbids weakening and contraction on the right-hand

side of sequents (intuitionistic sequents may have only a single formula on the right). The

logical extension of this is to restore the arity of sequents, but forbid weakening and contrac-

tion throughout and this gives us Linear Logic. At a deeper level, we perceive the lack of a

relation between the two critical abstractions within the Intuitionistic thinking on semantics

stated earlier: the concept of partiality and the pre-eminence of local notions fundamental

to the conception of sheaf semantics, seems difficult to relate to the fmitism of constructive

proofs. In fact, the conception of a proof itself, as a mathematical object, lacks a sufficiently

abstract formal description. We are reminded persistently that proofs are fundamentally

geometric objects and represent the finite dynamics of the system of inference ([25, 26]) yet

both geometry and dynamics, as conventionally understood in mathematics, remain elusive

within the theory. The situation is even more provocative as sheaf formulations and local

notions in the other strand of the abstraction are fundamentally geometric notions. Hence,

there is ground to question the legitimacy of constructive type theory as a foundation for the

semantics of information. For that matter one might question the claim of every proposed

system of proofs to such a foundational role (Linear Logic too) and we see here genuine lack

of clarity: for unless we have a formalism-independent and abstract mathematical character-

ization of the dynamics of information, there may be no ground for stopping at any specific

proof-calculus as foundational.

The lack of a relationship between the local formulations in sheaf semantics, and the fini-

tary formulations of constructive type theories is underscored all the more in our work, since

the basic notion of a proof-object comes from that of a residue which is really a represen-

tation of a partial evaluation. The partiality is under-emphasized in the construction of the

theory of constructions, and only weakly revived in the embedding within the Readability

Topos: genuine partiality should be captured in terms of local sections of the Type-objects

while in our case, all proof-objects turn out to be global a consequence of going via u>-Set.

In fact the lack of sensitivity to the partial is especially pronounced in the categorical con-

struction, where no special terminal property attaches to the Type {1} corresponding to

the completely undefined term ft: it shares the terminal property with any other singleton

Type even that of normal form terms!

Some of the considerations above lead us to question the critical role given to the w-Sets

and the partial equivalence relations in our work. We may recall that this was justified a

posteriori on the ground of an elegant topes-theoretic framework within which the theory
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of constructive types and that of dcnotalional domains could be related specifically one in

which the least upper bound constructions of canonical denotations (of terms) could be recon-

structed. The remarkably benefit was thai the denotational objects could be given a synthetic

formulation through an appropriate dominance. The specific advantage of embedding in a

topos is that the types (or their completions) could be conceived of logically as (intuitionistic)

sets and we would have a higher-order theory at our disposal. This was aesthetically satis-

fying in our case, since the Types were constructed basically from denotations, and thus we

could, starting from the latter, arrive at a rudimentary and abstract (higher-order) logic of

program denotations. An attempt had been made earlier by Abramsky ([2]) in this direction

on the basis of the Stone Duality, where the logic was essentially a weak second-order one.

Topos- theoretic models of impredicative type theories are traditionally obtained in two

ways: the first is through the classifying topos of the theory category ([62, 21]) which has

the advantage of yielding a conservative extension of its logic (appropriately conceived); the

second is through the construction of a small complete category in the Realizability Topos

([34]) of which the internal category of the modest sets is the best-known instance. Other

models are known, though not very frequently invoked ([38, 86]). The precise relationship or

its lack, between the two model constructions is not well-understood: in fact the realizability

topos is not even a grothendieck topos. We know that the u>-sets is the sub-category of

sheaves with respect to the -r--topology in the former (['W]), but we do not understand

how the topology comes to play such a canonical role in the world of effective mathematics:

the Godel translation, or considerations on decidability that prompt the double negation

offers no deep insight in the nature of effective objects, especially form the point of view of

the dynamics of information. Thus, in order to free the constructions from the contrived

character of the w-sets, or alternatively, to give a logical justification for using it within our

general program, we need to deepen the embedding framework keeping in mind, of course,

that we need a justifiable notion of an abstract logic of programs in the topos, and not lose the

synthetic character of the objects. Perhaps in this more general framework, we could obtain

stronger completeness properties of the internal domain-theoretic objects, perhaps even full

repleteness. This is then, the speculative ground of further research.



Bibliography

[1] M. Abadi and G. Plotkin. A PER model of polymorphism and recursive types. In Pro-

ceedings of the Fifth IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, 1990.

[2] S. Abramsky. Domain theory in logical form. Technical Report DOC 88/15, Imperial
College of Science and Technology, London, September 1988.

[3] R. Amadio. Recursion over readability structures. Information and Computation,
91:55-85, 1991.

[4] A. Asperti and G. Longo. Categories, Types and Structures. An introduction to cate-

gory theory for the working computer scientist. Foundations of Computing. MIT Press,

Cambridge, Massachusetts, 1991.

[5] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Ams-

terdam, 1984.

[6] H. Barendrcgt. Introduction to generalised typo systems. Technical Report 90-8, Dept.
of Informatics, University of Nijmogen, May 1990.

[7] M. Barr and C. Wells. Toposes, Triples and Theories. Springer- Verlag, Berlin, 1985.

[8] M. B. Beeson. Foundations of Constructive Mathematics. Springer- Verlag, 1985.

[9] J. Benabou. Fibered categories and the foundations of naive category theory. Journal

of Symbolic Logic, 50(l):10-37, 1985.

[10] G. Berry, P.-L. Curien, and J.-J. Levy. Full abstraction for sequential languages: the

state of the art. In M. Nivat and J. Reynolds, editors, Algebraic Methods in Semantics.

Cambridge University Press, Cambridge, 1985.

[11] G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and

J. Reynolds, editors, Algebraic Methods in Semantics, chapter 5, pages 170-236. Cam-

bridge University Press, Cambridge, 1985.

[12] J. A. CofTa. The Semantic Tradition from Kant to Camap To the Vienna Station.

Cambridge University Press, Cambridge, 1991.

181



182 BIBLIOGRAPHY

[13] R. L. Crolc and A. M. Pitts. Now foundations for fixpoint computations: F1X-

hyperdoctrines and the FIX-logic. Information and Computation, 98(2):171-210, 1992.

[14] P.-L. Curien. Categoiycal Combinators, Sequential Algorithms and Functional Program-

ming. Pitman, London, 1986.

[15] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, rewrite, rewrite, rewrite, rewrite,

. . . *. Theoretical Computer Science, 83, 1991.

[16] J. Dugundji. Topology. Universal Book Stall, New Delhi, third indian reprint edition,

1993.

[17] M. Dummett. Frege Philosophy of Language. Duckworth, London, second edition, 1981.

[18] T. Erhard. A categorical semantics of constructions. In Pi^oceedings of the Third IEEE

Symposium on Logic in Computer Science. IEEE, Computer Society Press, 1988.

[19] M. P. Fourman. Continuous truth I. Nonconstructive objects. In G. Lolli et al, editor,

Logic Colloquium '82, pages 161-180. North-Holland, Amsterdam, 1984.

[20] M. P. Fourman and D. S. Scott. Sheaves and logic. In Applications of Sheaves. Lecture

Notes in Mathematics 753, pages 302-401. Springer-Verlag, Berlin, 1979.

[21] M. P. Fourman and S. Vickers. Theories as categories. In Lecture Notes in Computer

Science 240, pages 434-448. Springer-Verlag, Berlin, 1985.

[22] P. Freyd, P. Mulry, G. Rosolini, and D. Scott. Extensional PERs. Information and

Computation, 98:211-227, 1992.

[23] P. Geach and M. Black. Translations from the Philosophical Writings of Gottlob Frege.

Oxford, second revised edition, 1960. Specifically, translation of Uber Sinn und Bedeu-

tung.

[24] J.-Y. Girard. Interpretation Fonctionelle ct Elimination des Coupures de rArithmetique

d'ordre superieur. PhD thesis, Universite Paris VII, 1972.

[25] J.-Y. Girard. Towards a geometry of interaction. In J. W. Gray and A. Scedrov, editors,

Categories in Computer Science and Logic. American Mathematical Society, 1987.

[26] J.-Y. Girard. Geometry of interaction 1: Interpretation of system F. In Ferro, Bonotto,

Valentini, and Zanardo, editors, Logic Colloquium '88, pages 221-260. Elsevier Science

Publishers B. V. (North-Holland), 1989.

[27] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University Press,

1989.

[28] R. Goldblatt. Topoi. The Categorial Analysis of Logic, volume 98 of Studies in Logic

and the Foundations of Mathematics. North- Holland, 1979.



B/BL/OGRAPHV
183

[29] C. A. CuntcT and I). S. SroU. Semantic domains. In .1. van looiiwon, editor, Handbook

of Theoretical Computer Science, chapter 12, pages 635-674. Elsevier Science Publishers

B. V., 1990.

[30] J. R. Hindley and J. P. Seldin. Introduction to Combinators and A- Calculus, volume 1 of

London Mathematical Society Student Texts. Cambridge University Press, Cambridge,
1986.

[31] G. Huet and D. Oppen. Equations and rewrite rules: a survey. Technical report, SRI,
1979.

[32] H. Huwig and A. Poigne. A note on inconsistencies caused by fixpoints in cartesian

closed categories. Theoretical Computer Science, 73:101-112, 1990. Note.

[33] J. M. E. Hyland. The effective topos. In A. S. Troclstra and D. van Dalen, editors, The

L. E. J. Brouwer Centenary Symposium. North-Holland, 1982.

[34] J. M. E. Hyland. A small complete category. Annals of Pure and Applied Logic, 40,

1988.

[35] J. M. E. Hyland. First steps in synthetic domain theory. Lecture Notes in Mathematics,

1488, 1991.

[36] J. M. E. Hyland and G. Rosolini E. P. Robinson. The discrete objects in the effective

topos. Proceedings of the London Mathematical Society, 60:1-36, 1990.

[37] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. Tripos theory. Mathematical

Proceedings of the Cambridge Philosophical Society, 88, 1980.

[38] J. M. E. Hyland and A.M. Pitts. The theory of constructions: Categorical semantics and

topos-theoretic models. In J. W. Gray and A. Scedrov, editors, Categories in Computer

Science and Logic. American Mathematical Society, 1987.

[39] B. Jacobs, E. Moggi, and T. Streicher. Relating models of impredicative type theories.

In D. H. Pitt et al, editor, Category Theory and Computer Science. Lecture Notes in

Computer Science 530, pages 197-218, Berlin, 1991. Springer-Verlag.

[40] B. P. F. Jacobs. Categorical Type Theory. PhD thesis, Univ. Nijmegen, 1991.

[41] B. P. F. Jacobs. Comprehension categories and the semantics of type dependency. Tech-

nical report, Univ. Nijmegen, 1991.

[42] P. T. Johnstone. Topos Theory, volume 10 of L. M. S. Monographs. Academic Press,

London, 1977.

[43] A. Jung. Cartesian closed categories of algebraic epos. Theoretical Computer Science,

70:233-250, 1990.



184 BIBLIOGRAPHY

[44] J. Larnbck. Cartesian closed categories and typed lambda calculi. In G. Cousincau, P.-L.

Curien, and B. Robinet, editors, Combinators and Functional Programming Languages.

Lectures Notes in Computer Science 2J2. Springer-Verlag, Berlin, 1985.

[45] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorial Logic, volume 7 of

Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1986.

[46] F. W. Lawvere. Adjointness in foundations. Dialectica, 23:281-296, 1969.

[47] F. W. Lawvere. Equality in hyperdoctrines and the comprehension schema as an adjoint

functor. In A. Heller, editor, Proceedings of the New York Symposium on Applications

of Categorical Logic, pages 1-14. American Mathematical Society, 1970.

[48] G. Longo and E. Moggi. Constructive natural deduction and its u>-set interpretation.

Technical Report LJENS-90-21, LIENS, DMI, Ecole Normale Superieure, October 1990.

[49] S. MacLane. Categories for the Working Mathematician. Springer-Verlag, New York,

1971.

[50] P. Martin-L6f. An intuitionistic theory of types: Predicative part. In H. E. Rose and J. C.

Shepherdson, editors, Logic Colloquium, '73, pages 73-118. North- Holland, Amsterdam,

1973.

[51] P. Martin-L6f. Constructive mathematics and computer programming. In Proceedings of

the 6th International Congress for Logic, Methodology, and Philosophy of Science, pages

153-175, Amsterdam, 1982. North-Holland.

[52] P. Martin-L6f. Notes on the domain theoretic interpretation of type theory. In Proceed-

ings of the Workshop on Semantics of Programming Languages. Chalmers University,

1983.

[53] P. Martin- Lof. Intuitionistic Tyjx Theory. Bibliopolis, Napoli, 1984.

[54] P. Mulry. Generalized banach-mazur functional in the topos of recursive sets. Journal

of Pure and Applied Algebra, 26:71-83, 1981.

[55] C. R. Murthy. Extracting Constructive Content from Classical Proof. PhD thesis, De-

partment of Computer Science, Cornell University, 1990.

[56] M. Nivat. On the interpretation of recursive polyadic program schemes. Symposia

Mathematica, 15:255-281, 1975.

[57] D. Pavlovic. Predicates and Fibrations. PhD thesis, Faculteit der Wiskunde en Infor-

inatica, Rijksnnivcrsiteit Utrecht, May 1990.

[58] W. Phoa. Domain Theory in Readability Toposes. PhD thesis, Oxford, 1986.

[59] W. Phoa. Effective domains and intrinsic structure. In Proceedings of the Fifth IEEE

Symposium on Logic in Computer Science. IEEE Computer Society Press, 1990.



BIBLIOGRAPHY 185

[60] W. Phoa. From term models to domains. In Proceedings of the Symjiotnum on Theoretical

Aspects of Computer Software. Lecture Notes in Computer Science 526. Springer-Verlag,

1991.

[61] W. Phoa. An introduction to fibrations, topos theory, the effective topos and modest

sets. Technical report, LFCS Univ. of Edinburgh, April 1992.

[62] A. M. Pitts. Polymorphism is set theoretic, constructively. In D. H. Pitt et al, editor,

Category Theory and Computer Science. Lecture Notes in Computer Science 283, Berlin,

1987. Springer-Verlag.

[63] G. Plotkin. A powerdomain construction. SIAM Journal on Computing, 5:452-488,

1976.

[64] G. Plotkin. The category of complete partial orders: a tool for making meanings. In Pro-

ceedings of the Summer School on Foundations of Artificial Intelligence and Computer

Science. Institute di Scienze dell'Informazione, University of Pisa, 1978.

[65] J. C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn et al, editor, Semantics

of Data Types. Lecture Notes in Computer Science 173, pages 145-156. Springer-Verlag,

Berlin, 1984.

[66] E. Robinson. How complete is PER? In Proceedings of the Fourth IEEE Symposium on

Logic in Computer Science. IEEE Computer Society Press, 1989.

[67] G. Rosolini. Continuity and Effectiveness in Topoi. PhD thesis, Carnegie- Mellon Uni-

versity, 1986.

[68] G. Rosolini. Categories and effective computations. Lecture Notes in Computer Science,

283, 1987.

[69] G. Rosolini. About modest sets. International Journal of Foundations of Computer

Science, l(3):341-353, 1990.

[70] D. S. Scott. Lattice-theoretic models for the A-calculus. Princeton University, 1969.

[71] D. S. Scott. Outline of a mathematical theory of computation. In Proceedings of the

Fourth Annual Princeton Conference on Information Science and Systems, 1970.

[72] D. S. Scott. Continuous lattices. In F. W. Lawvere, editor, Toposes, Algebraic Geometry

and Logic. Lecture Notes in Mathematics 274. Springer-Verlag, Berlin, 1972.

'[73] D. S. Scott. Data types as lattices. SIAM Journal on Computing, 5:522-587, 1976.

[74] D. S. Scott. Relating theories of the lambda calculus. In J. R. Hindley and J. P. Setdin,

editors, To H. B. Curry: essays on combinatory logic, lambda calculus and formalism,

pages 403-450. Academic Press, London, 1980.

[75] D. S. Scott. Lectures on a mathematical theory of computation. Technical Iteport

PRG-19, Oxford University, Oxford, 1981.



186 BIBLIOGRAPHY

[76] It. A. G. Seely. llyponioctrincs, natural deduction and the Heck condition. Zeitschrift

fur Math. Logik und Grundlagen der Math., 29:505-542, 1983.

[77] R. A. G. Seely. Locally cartesian closed categories and type theory. Mathematical

Proceedings of the Cambridge Philosophical Society, 95:33-48, 1984.

[78] R. A. G. Seely. Categorical semantics for higher order polymorphic lambda calculus.

The Journal of Symbolic Logic, 52(4):969-989, December 1987.

[79] M. B. Smyth. The largest cartesian closed category of domains. Theoretical Computer

Science, 27:109-119, 1983.

[80] M. B. Smyth and G. Plotkin. The category-theoretic solution of recursive domain equa-

tions. SIAM Journal on Computing, ll(4):761-783, 1982.

[81] A. Stoughton. Fully Abstract Models of Programming Languages. Pitman, London, 1988.

[82] T. Streicher. Dependence and independence results for (impredicative) calculi of depen-

dent types. Technical Kcporl Mil* 9015, Univorsitat Passau, Fakultat fur Mathcrnalik

und Informatik, October 1990.

[83] A. Tarski. The semantic conception of truth and the foundations of semantics. Philosophy

and Phenomenological Research, 4, 1944.

[84] A. Tarski. Logic, Semantics, Metamathcmatics. Pajycrs fwm 1923 to 1938. Hackett

Publishing Co., Indianapolis, second edition, 1983.

[85] P. Taylor. Recursive Domains, Indexed Category Theory and Polymorphism. PhD thesis,

Mathematics Department, University of Cambridge, 1987.

[86] P. Taylor. The fixed point property in synthetic domain theory. In Proceedings of the

Sixth IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press,

1991.

[87] A. Troelstra and D. van Dalen. Constructivism in Mathematics. An Introduction, vol-

ume 121, 123 of Studies in Logic and the Foundations of Mathematics. North-Holland,

Amsterdam, 1988.

[88] S. Vickers. Topolgy via Logic. Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, Cambridge, 1989.

[89] C. P. Wadsworth. The relation between computational and denotational properties for

Scott's D model. SIAM Journal on Computing, 5(3):488-521, September 1976.

[90] 0. Wyler. Lecture Notes on Topoi and Quasitopoi. World Scientific, Singapore, 1991.








